414 resultados para fibre Bragg grating


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have designed and fabricated a new type of fibre Bragg grating (FBG) with a V-shaped dispersion profile for multi-channel dispersion compensation in communication links.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long period grating is interrogated with a fibre Bragg grating using a derivative spectroscopy technique. A quasi-linear relationship between the output of the sensing scheme and the curvature experienced by the long period grating is demonstrated, with a sensitivity of 5.05 m and with an average curvature resolution of 2.9 × 10-2 m-1. In addition, the feasibility of multiplexing an in-line series of long period gratings with this interrogation scheme is demonstrated with two pairs of fibre Bragg gratings and long period gratings. With this arrangement the cross-talk error between channels was less than ± 2.4 × 10-3 m-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the first use of a multicore fibre incorporating fibre Bragg grating strain sensors in each core as a fibre optic pitch and roll sensor. A length of four-core fibre supported at one end forms a cantilever. The differential strains between opposite grating pairs depend on the fibre’s orientation in pitch (in the vertical plane) and roll (azimuth) with respect to gravity. Resolutions of ±2◦ in roll and ±15◦ in pitch were measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tactile sensors are needed for many emerging robotic and telepresence applications such as keyhole surgery and robot operation in unstructured environments. We have proposed and demonstrated a tactile sensor consisting of a fibre Bragg grating embedded in a polymer "finger". When the sensor is placed in contact with a surface and translated tangentially across it measurements on the changes in the reflectivity spectrum of the grating provide a measurement of the spatial distribution of forces perpendicular to the surface and thus, through the elasticity of the polymer material, to the surface roughness. Using a sensor fabricated from a Poly Siloxane polymer (Methyl Vinyl Silicone rubber) spherical cap 50 mm in diameter, 6 mm deep with an embedded 10 mm long Bragg grating we have characterised the first and second moment of the grating spectral response when scanned across triangular and semicircular periodic structures both with a modulation depth of 1 mm and a period of 2 mm. The results clearly distinguish the periodicity of the surface structure and the differences between the two different surface profiles. For the triangular structure a central wavelength modulation of 4 pm is observed and includes a fourth harmonic component, the spectral width is modulated by 25 pm. Although crude in comparison to human senses these results clearly shown the potential of such a sensor for tactile imaging and we expect that with further development in optimising both the grating and polymer "finger" properties a much increased sensitivity and spatial resolution is achievable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the possibility of using intermediate solutions, in which ideal apodisation profile for a dispersion-free, sharp-reflection profile fibre Bragg grating approximated in different degrees. The ideal apodisation profile for a flat dispersion, 50 GHz bandwidth grating was obtained using the layer-peeling algorithm. To verify the modelled results a version of the 5-section grating has been manufactured with excellent agreement between the model and the experimental results. The performance penalty due to multiple reflections from the FBGs in different situations was studied. The results showed that in the approximated gratings some post-compensation must be included to account for the local deviations from zero dispersion. © 2003 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the first demonstration of the simultaneous measurement of strain and curvature, with temperature compensation, using a single superstructure fibre Bragg grating (SFBG). The SFBG exhibits the properties of both the fibre Bragg grating (FBG) and the long period fibre grating (LPG) such that its spectral response facilitates strain measurement from the wavelength shift of the FBG-like characteristic, and independent measurement of curvature from the LPG-like mode-splitting characteristic. The dependence of the LPG mode-splitting on the mode order has also been investigated and utilised for the measurement of very small curvatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inscription of Bragg gratings has been demonstrated in PMMA-based polymer optical fibre. The water affinity of PMMA can introduce significant wavelength change in a polymer optical fibre Bragg grating (POFBG). In polymer optical fibre losses are much higher than with silica fibre. Very strong absorption bands related to higher harmonics of vibrations of the C-H bond dominate throughout the visible and near infrared. Molecular vibration in substances generates heat, which is referred to as the thermal effect of molecular vibration. This means that a large part of the absorption of optical energy in those spectral bands will convert into thermal energy, which eventually drives water content out of the polymer fibre and reduces the wavelength of POFBG. In this work we have investigated the wavelength stability of POFBGs in different circumstances. The experiment has shown that the characteristic wavelength of a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fibre is established, depending on the initial water content inside the fibre, the surrounding humidity, the optical power applied, and the fibre size. Our investigation has shown that POFBGs operating at around 850 nm show much smaller wavelength reduction than those operating at around 1550 nm in the same fibre; POFBGs with different diameters show different changes; POFBGs powered by a low level light source, or operating in a very dry environment are least affected by this thermal effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing patch for strain or temperature sensing. The cyclic strain performance and temperature characteristics of both devices are examined and discussed. The strain sensitivities of the sensing patches were 0.40 and 0.95 pm/μϵ for SOFBG embedded in ABS, 0.38 pm/μμ for POFBG in PLA, and 0.15 pm/μμ for POFBG in ABS. The strain response was linear above a threshold and repeatable. The temperature sensitivity of the SOFBG sensing patch was found to be up to 169 pm/°C, which was up to 17 times higher than for an unembedded silica grating. Unstable temperature response POFBG embedded in PLA was reported, with temperature sensitivity values varying between 30 and 40 pm/°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A prototype fibre-optic system using interferometric wavelength-shift detection, capable of multiplexing up to 32 fibre-optic Bragg grating strain and temperature sensors with identical characteristics, has been demonstrated. This system is based on a spatially multiplexed scheme for use with fibre-based low-coherence interferometric sensors, reported previously. Four fibre-optic Bragg grating channels using the same fibre grating have been demonstrated for measuring quasi-static strain and temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a Bragg grating written in an eccentric-cored polymer optical fibre for measurement of strain, bend and temperature. The strain sensitivity achieves 1.13 pm µe -1. The temperature response shows a negative sign with the thermal sensitivity of -50.1 pm ?C-1. For bend sensing, this device exhibits a strong fibre orientational dependence, wide bend curvature range of ±22.7 m-1 and a high bend sensitivity of 63.3 pm/m-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the fabrication and characterisation of a Bragg grating in multimode microstructured polymer optical fibre with a Bragg wavelength of 827nm. This is the smallest Bragg wavelength reported to date for a polymer optical fibre grating and the relatively low loss of the fibre at this wavelength considerably enhances the utility of the device compared to gratings at longer wavelengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a thorough study on the development of a polymer optical fibre-based tuneable filter utilizing an intra-core Bragg grating that is electrically tuneable, operating at 1.55 µm. The Bragg grating is made tuneable using a thin-film resistive heater deposited on the surface of the fibre. The polymer fibre was coated via the photochemical deposition of a Pd/Cu metallic layer with the procedure induced by VUV radiation at room temperature. The resulting device, when wavelength tuned via Joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of -13.4 pm mW-1 and time constant of 1.7 s-1. A basic theoretical study verified that for this fibre type one can treat the device as a one-dimensional system. The model was extended to include the effect of input electrical power changes on the refractive index of the fibre and subsequently to changes in the Bragg wavelength of the grating, showing excellent agreement with the experimental measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the fabrication and characterization of a fiber Bragg grating (FBG) with 870 nm resonance wavelength in a single-mode TOPAS microstructured polymer optical fiber (mPOF). The grating has been UV-written with the phasemask technique using a 325 nm HeCd laser. The static tensile strain sensitivity has been measured as 0.64 pm/µstrain, and the temperature sensitivity was -60 pm/°C. This is the first 870nm FBG and the first demonstration of a negative temperature response for the TOPAS FBG, for which earlier results have indicated a positive temperature response. The relatively low material loss of the fiber at this wavelength compared to that at longer wavelengths will considerably enhance the potential utility of the TOPAS FBG.