110 resultados para exercise, axial length, intraocular pressure, myopia, refractive error
Resumo:
PURPOSE: To profile accommodative biometric changes longitudinally and to determine the influence of age-related ocular structural changes on the accommodative response prior to the onset of presbyopia. METHODS: Twenty participants (aged 34-41 years) were reviewed at six-monthly intervals over two and a half years. At each visit, ocular biometry was measured with the LenStar biometer (www.Haag-Streit.com) in response to 0.00, 3.00 and 4.50 D stimuli. Accommodative responses were measured by the WAM 5500 Auto Ref/Keratometer (www.grandseiko.com). RESULTS: During accommodation, anterior chamber depth reduced (F = 29, p < 0.001), whereas crystalline lens thickness (F = 39, p < 0.001) and axial length (F = 5.4, p = 0.009) increased. The accommodative response (F = 5.5, p = 0.001) and the change in anterior chamber depth (F = 3.1, p = 0.039), crystalline lens thickness (F = 3.0, p = 0.042) and axial length (F = 2.5, p = 0.038) in response to the 4.50 D accommodative target reduced after 2.5 years. However, the change in anterior chamber depth (F = 2.2, p = 0.097), crystalline lens thickness (F = 1.7, p = 0.18) and axial length (F = 1.0, p = 0.40) per dioptre of accommodation exerted remained invariant after 2.5 years. The increase in disaccommodated crystalline lens thickness with age was not significantly associated with the reduction in accommodative response (R = 0.32, p = 0.17). CONCLUSION: Despite significant age-related structural changes in disaccommodated biometry, the change in biometry per dioptre of accommodation exerted remained invariant with age. The present study supports the Helmholtz theory of accommodation and suggests an increase in lenticular stiffness is primarily responsible for the onset of presbyopia.
Resumo:
Retinoic acid (RA) is thought to signal through retinoic acid receptors (RARs), i.e. RARα, β, and γ to play important roles in embryonic development and tissue regeneration. In this thesis, the zebrafish (Danio rario) was used as a vertebrate model organism to examine the role of RARγ. Treatment of zebrafish embryos with a RARγ specific agonist reduced the axial length of developing embryos, associated with reduced somite number and loss of hoxb13a expression. There were no clear alterations in hoxc11a or myoD expression. Treatment with the RARγ agonist disrupted the formation of anterior structures of the head, the cranial bones and the anterior lateral line ganglia, associated with a loss of sox9 immunopositive cells in the same regions. Pectoral fin outgrowth was blocked by treatment with the RARγ agonist; however, this was not associated with loss of tbx5a immunopositive lateral plate cells and was reversed by wash out of the RARγ agonist or co-treatment with a RARγ antagonist. Regeneration of the transected caudal fin was also blocked by RARγ agonist treatment and restored by agonist washout or antagonist co-treatment; this phenotype was associated with a localised reduction in canonical Wnt signalling. Conversely, elevated canonical Wnt signalling after RARγ treatment was seen in other tissues, including ectopically in the notochord. Furthermore, some phenotypes seen in the RARγ treated embryos were present in mutant zebrafish embryos in which canonical Wnt signalling was constitutively increased. These data suggest that RARγ plays an essential role in maintaining neural crest and mesodermal stem/progenitor cells during normal embryonic development and tissue regeneration when the receptor is in its non-ligated state. In addition, this work has provided evidence that the activation status of RARγ may regulate hoxb13a gene expression and canonical Wnt signalling. Further research is required to confirm such novel regulatory roles.
Resumo:
Purpose: To determine the response of retinal vessels to differing durations of flicker light (FL) sitmulation. Methods: We recorded retinal arterial and venous vessel dilation to 12.5 Hz flicker light provocation (Retinal Vessel Analyzer, Imedos Systems) of varying duration (5, 7, 10 and 20 seconds) in twelve healthy young individuals (age range 26-45 yrs). All participants underwent a full ocular examination including intraocular pressure and blood pressure measurements. Results: Maximum dilation (MD) did not show a significant dependence on flicker duration in arteries whereas maximum constriction (MC) did. However, in veins MD significantly increased with flicker duration. Approximately 80-90% of MD in arteries is reached within 10 seconds of flicker light stimulation. Conclusions: The vast majority of arterial dilatory capacity is reached within 10 seconds of flicker light stimulation even though venous dilation continues strongly. Since the MC of arteries shows a significant dependence on flicker duration measurements at two different durations can provide more information about the retinal vascular system than at a single flicker duration alone.
Resumo:
Corneal surface laser ablation procedures for the correction of refractive error have enjoyed a resurgence of interest, especially in patients with a possible increased risk of complications after lamellar surgery. Improvements in the understanding of corneal biomechanical changes, the modulation of wound healing, laser technology including ablation profiles and different methods for epithelial removal have widened the scope for surface ablation. This article discusses photorefractive keratectomy, trans-epithelial photorefractive keratectomy, laser-assisted sub-epithelial keratomileusis and epithelial-laser-assisted in situ keratomileusis. © 2010 The Authors. Journal compilation © 2010 Royal Australian and New Zealand College of Ophthalmologists.
Resumo:
To study the visual and refractive outcomes after laser-assisted subepithelial keratectomy (LASEK) performed with a 213 nm solid-state laser for a broad range of refractive errors.