377 resultados para Fiber nonlinear optics


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A theoretical model allows for the characterization and optimization of the intra-cavity pulse evolutions in high-power fiber lasers. Multi-parameter analysis of laser performance can be made at a fraction of the computational cost.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the third and final talk on dissipative structures in fiber applications, we discuss mathematical techniques that can be used to characterize modern laser systems that consist of several discrete elements. In particular, we use a nonlinear mapping technique to evaluate high power laser systems where significant changes in the pulse evolution per cavity round trip is observed. We demonstrate that dissipative soliton solutions might be effectively described using this Poincaré mapping approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we propose a saturable absorber (SA) device consisting on an in-fiber micro-slot inscribed by femtosecond laser micro fabrication, filled by a dispersion of Carbon Nanotubes (CNT). Due to the flexibility of the fabrication method, efficient and simple integration of the mode-locking device directly into the optical fiber is achieved. Furthermore, the fabrication process offers a high level of control over the dimensions and location of the micro-slots. We apply this fabrication flexibility to extend the interaction length between the CNT and the propagating optical field along the optical fiber, hence enhancing the nonlinearity of the device. Furthermore, the method allows the fabrication of devices that operate by either a direct field interaction (when the central peak of the propagating optical mode passes through the nonlinear media) or an evanescent field interaction (only a fraction of the optical mode interacts with the CNT). In this paper, several devices with different interaction lengths and interaction regimes are investigated. Self-starting passively modelocked laser operation with an enhanced nonlinear interaction is observed using CNT-based SAs in both interaction regimes. This method constitutes a simple and suitable approach to integrate the CNT into the optical system as well as enhancing the optical nonlinearity of CNT-based photonic devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fueled by their high third-order nonlinearity and nonlinear saturable absorption, carbon nanotubes (CNT) are expected to become an integral part of next-generation photonic devices such as all-optical switches and passive mode-locked lasers. However, in order to fulfill this expectation it is necessary to identify a suitable platform that allows the efficient use of the optical properties of CNT. In this paper, we propose and implement a novel device consisting of an optofluidic device filled with a dispersion of CNT. By fabricating a microchannel through the core of a conventional fiber and filling it with a homogeneous solution of CNTs on Dimethylformamide (DMF), a compact, all-fiber saturable absorber is realized. The fabrication of the micro-fluidic channel is a two-step process that involves femtosecond laser micro-fabrication and chemical etching of the laser-modified regions. All-fiber high-energy, passive mode-locked lasing is demonstrated with an output power of 13.5 dBm. The key characteristics of the device are compactness and robustness against optical, mechanical and thermal damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This letter compares two nonlinear media for simultaneous carrier recovery and generation of frequency symmetric signals from a 42.7-Gb/s nonreturn-to-zero binary phase-shift-keyed input by exploiting four-wave mixing in a semiconductor optical amplifier and a highly nonlinear optical fiber for use in a phase-sensitive amplifier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonlinear pulse propagation in a few mode fiber is experimentally investigated, by measuring temporal and phase responses of the output pulses by use of a frequency discriminator technique, showing that self-phase modulation, dispersion and linear mode-coupling are the dominant effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

All-optical data processing is expected to play a major role in future optical communications. Nonlinear effects in optical fibers have attractive applications in optical signal processing. In this paper, we review our recent advances in developing all-optical processing techniques at high speed based on optical fiber nonlinearities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel simple all-optical nonlinear pulse processing technique using loop mirror intensity filtering and nonlinear broadening in normal dispersion fiber is described. The pulse processor offers reamplification and cleaning up of the optical signals and phase margin improvement. The efficiency of the technique is demonstrated by application to 40-Gb/s return-to-zero optical data streams.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze the steady-state propagation of optical pulses in fiber transmission systems with lumped nonlinear optical devices (NODs) placed periodically in the line. For the first time to our knowledge, a theoretical model is developed to describe the transmission regime with a quasilinear pulse evolution along the transmission line and the point action of NODs. We formulate the mapping problem for pulse propagation in a unit cell of the line and show that in the particular application to nonlinear optical loop mirrors, the steady-state pulse characteristics predicted by the theory accurately reproduce the results of direct numerical simulations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A theoretical model is developed to describe the propagation of ultrashort optical pulses in fiber transmission systems in the quasilinear regime, with periodically inserted in-line nonlinear optical devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have proposed and demonstrated a nonlinear polarization-rotation-based fiber laser with two different operation states: passive mode-locking and multiwavelength emission. The intensity-dependent transmission or loss induced by nonlinear polarization rotation accounts for the distinct operation regimes. Our experiment results indicate that both passively mode-locked pulses and continuous-wave multiwavelength can be generated from the same fiber laser just through adjusting polarizations. Another characteristic of the current multiwavelength laser is that the used periodic filter is a birefringence fiber filter, which facilitates all-fiber integration of the fiber laser, so it is a potential multifunction laser source with all-fiber configuration and convenient manipulation. © 2008 IEEE.