136 resultados para Data-driven analysis
Resumo:
Financial institutes are an integral part of any modern economy. In the 1970s and 1980s, Gulf Cooperation Council (GCC) countries made significant progress in financial deepening and in building a modern financial infrastructure. This study aims to evaluate the performance (efficiency) of financial institutes (banking sector) in GCC countries. Since, the selected variables include negative data for some banks and positive for others, and the available evaluation methods are not helpful in this case, so we developed a Semi Oriented Radial Model to perform this evaluation. Furthermore, since the SORM evaluation result provides a limited information for any decision maker (bankers, investors, etc...), we proposed a second stage analysis using classification and regression (C&R) method to get further results combining SORM results with other environmental data (Financial, economical and political) to set rules for the efficient banks, hence, the results will be useful for bankers in order to improve their bank performance and to the investors, maximize their returns. Mainly there are two approaches to evaluate the performance of Decision Making Units (DMUs), under each of them there are different methods with different assumptions. Parametric approach is based on the econometric regression theory and nonparametric approach is based on a mathematical linear programming theory. Under the nonparametric approaches, there are two methods: Data Envelopment Analysis (DEA) and Free Disposal Hull (FDH). While there are three methods under the parametric approach: Stochastic Frontier Analysis (SFA); Thick Frontier Analysis (TFA) and Distribution-Free Analysis (DFA). The result shows that DEA and SFA are the most applicable methods in banking sector, but DEA is seem to be most popular between researchers. However DEA as SFA still facing many challenges, one of these challenges is how to deal with negative data, since it requires the assumption that all the input and output values are non-negative, while in many applications negative outputs could appear e.g. losses in contrast with profit. Although there are few developed Models under DEA to deal with negative data but we believe that each of them has it is own limitations, therefore we developed a Semi-Oriented-Radial-Model (SORM) that could handle the negativity issue in DEA. The application result using SORM shows that the overall performance of GCC banking is relatively high (85.6%). Although, the efficiency score is fluctuated over the study period (1998-2007) due to the second Gulf War and to the international financial crisis, but still higher than the efficiency score of their counterpart in other countries. Banks operating in Saudi Arabia seem to be the highest efficient banks followed by UAE, Omani and Bahraini banks, while banks operating in Qatar and Kuwait seem to be the lowest efficient banks; this is because these two countries are the most affected country in the second Gulf War. Also, the result shows that there is no statistical relationship between the operating style (Islamic or Conventional) and bank efficiency. Even though there is no statistical differences due to the operational style, but Islamic bank seem to be more efficient than the Conventional bank, since on average their efficiency score is 86.33% compare to 85.38% for Conventional banks. Furthermore, the Islamic banks seem to be more affected by the political crisis (second Gulf War), whereas Conventional banks seem to be more affected by the financial crisis.
Resumo:
A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature. We have constructed an information extraction system based on the Hidden Vector State (HVS) model for protein-protein interactions. The HVS model can be trained using only lightly annotated data whilst simultaneously retaining sufficient ability to capture the hierarchical structure. When applied in extracting protein-protein interactions, we found that it performed better than other established statistical methods and achieved 61.5% in F-score with balanced recall and precision values. Moreover, the statistical nature of the pure data-driven HVS model makes it intrinsically robust and it can be easily adapted to other domains.
Resumo:
Many tests of financial contagion require a definition of the dates separating calm from crisis periods. We propose to use a battery of break search procedures for individual time series to objectively identify potential break dates in relationships between countries. Applied to the biggest European stock markets and combined with two well established tests for financial contagion, this approach results in break dates which correctly identify the timing of changes in cross-country transmission mechanisms. Application of break search procedures breathes new life into the established contagion tests, allowing for an objective, data-driven timing of crisis periods.
Resumo:
This paper demonstrates that the conventional approach of using official liberalisation dates as the only existing breakdates could lead to inaccurate conclusions as to the effect of the underlying liberalisation policies. It also proposes an alternative paradigm for obtaining more robust estimates of volatility changes around official liberalisation dates and/or other important market events. By focusing on five East Asian emerging markets, all of which liberalised their financial markets in the late, and by using recent advances in the econometrics of structural change, it shows that (i) the detected breakdates in the volatility of stock market returns can be dramatically different to official liberalisation dates and (ii) the use of official liberalisation dates as breakdates can readily entail inaccurate inference. In contrast, the use of data-driven techniques for the detection of multiple structural changes leads to a richer and inevitably more accurate pattern of volatility evolution emerges in comparison with focussing on official liberalisation dates.
Resumo:
This paper investigates whether the non-normality typically observed in daily stock-market returns could arise because of the joint existence of breaks and GARCH effects. It proposes a data-driven procedure to credibly identify the number and timing of breaks and applies it on the benchmark stock-market indices of 27 OECD countries. The findings suggest that a substantial element of the observed deviations from normality might indeed be due to the co-existence of breaks and GARCH effects. However, the presence of structural changes is found to be the primary reason for the non-normality and not the GARCH effects. Also, there is still some remaining excess kurtosis that is unlikely to be linked to the specification of the conditional volatility or the presence of breaks. Finally, an interesting sideline result implies that GARCH models have limited capacity in forecasting stock-market volatility.
Resumo:
Failure to detect or account for structural changes in economic modelling can lead to misleading policy inferences, which can be perilous, especially for the more fragile economies of developing countries. Using three potential monetary policy instruments (Money Base, M0, and Reserve Money) for 13 member-states of the CFA Franc zone over the period 1989:11-2002:09, we investigate the magnitude of information extracted by employing data-driven techniques when analyzing breaks in time-series, rather than the simplifying practice of imposing policy implementation dates as break dates. The paper also tests Granger's (1980) aggregation theory and highlights some policy implications of the results.
Resumo:
This article focuses on the deviations from normality of stock returns before and after a financial liberalisation reform, and shows the extent to which inference based on statistical measures of stock market efficiency can be affected by not controlling for breaks. Drawing from recent advances in the econometrics of structural change, it compares the distribution of the returns of five East Asian emerging markets when breaks in the mean and variance are either (i) imposed using certain official liberalisation dates or (ii) detected non-parametrically using a data-driven procedure. The results suggest that measuring deviations from normality of stock returns with no provision for potentially existing breaks incorporates substantial bias. This is likely to severely affect any inference based on the corresponding descriptive or test statistics.
Resumo:
The rationale for carrying out this research was to address the clear lack of knowledge surrounding the measurement of public hospital performance in Ireland. The objectives of this research were to develop a comprehensive model for measuring hospital performance and using this model to measure the performance of public acute hospitals in Ireland in 2007. Having assessed the advantages and disadvantages of various measurement models the Data Envelopment Analysis (DEA) model was chosen for this research. DEA was initiated by Charnes, Cooper and Rhodes in 1978 and further developed by Fare et al. (1983) and Banker et al. (1984). The method used to choose relevant inputs and outputs to be included in the model followed that adopted by Casu et al. (2005) which included the use of focus groups. The main conclusions of the research are threefold. Firstly, it is clear that each stakeholder group has differing opinions on what constitutes good performance. It is therefore imperative that any performance measurement model would be designed within parameters that are clearly understood by any intended audience. Secondly, there is a lack of publicly available qualitative information in Ireland that inhibits detailed analysis of hospital performance. Thirdly, based on available qualitative and quantitative data the results indicated a high level of efficiency among the public acute hospitals in Ireland in their staffing and non pay costs, averaging 98.5%. As DEA scores are sensitive to the number of input and output variables as well as the size of the sample it should be borne in mind that a high level of efficiency could be as a result of using DEA with too many variables compared to the number of hospitals. No hospital was deemed to be scale efficient in any of the models even though the average scale efficiency for all of the hospitals was relatively high at 90.3%. Arising from this research the main recommendations would be that information on medical outcomes, survival rates and patient satisfaction should be made publicly available in Ireland; that despite a high average efficiency level that many individual hospitals need to focus on improving their technical and scale efficiencies, and that performance measurement models should be developed that would include more qualitative data.
Resumo:
Practitioners assess performance of entities in increasingly large and complicated datasets. If non-parametric models, such as Data Envelopment Analysis, were ever considered as simple push-button technologies, this is impossible when many variables are available or when data have to be compiled from several sources. This paper introduces by the 'COOPER-framework' a comprehensive model for carrying out non-parametric projects. The framework consists of six interrelated phases: Concepts and objectives, On structuring data, Operational models, Performance comparison model, Evaluation, and Result and deployment. Each of the phases describes some necessary steps a researcher should examine for a well defined and repeatable analysis. The COOPER-framework provides for the novice analyst guidance, structure and advice for a sound non-parametric analysis. The more experienced analyst benefits from a check list such that important issues are not forgotten. In addition, by the use of a standardized framework non-parametric assessments will be more reliable, more repeatable, more manageable, faster and less costly. © 2010 Elsevier B.V. All rights reserved.
Resumo:
While conventional Data Envelopment Analysis (DEA) models set targets for each operational unit, this paper considers the problem of input/output reduction in a centralized decision making environment. The purpose of this paper is to develop an approach to input/output reduction problem that typically occurs in organizations with a centralized decision-making environment. This paper shows that DEA can make an important contribution to this problem and discusses how DEA-based model can be used to determine an optimal input/output reduction plan. An application in banking sector with limitation in IT investment shows the usefulness of the proposed method.
Resumo:
We developed an alternative approach for measuring information and communication technology (ICT), applying Data Envelopment Analysis (DEA) using data from the International Telecommunications Union as a sample of 183 economies. We compared the ICT-Opportunity Index (ICT-OI) with our DEA-Opportunity Index (DEA-OI) and found a high correlation between the two. Our findings suggest that both indices are consistent in their measurement of digital opportunity, though differences still exist in different regions. Our new DEA-OI offers much more than the ICT-OI. Using our model, the target and peer groups for each country can be identified.
Resumo:
The existing assignment problems for assigning n jobs to n individuals are limited to the considerations of cost or profit measured as crisp. However, in many real applications, costs are not deterministic numbers. This paper develops a procedure based on Data Envelopment Analysis method to solve the assignment problems with fuzzy costs or fuzzy profits for each possible assignment. It aims to obtain the points with maximum membership values for the fuzzy parameters while maximizing the profit or minimizing the assignment cost. In this method, a discrete approach is presented to rank the fuzzy numbers first. Then, corresponding to each fuzzy number, we introduce a crisp number using the efficiency concept. A numerical example is used to illustrate the usefulness of this new method. © 2012 Operational Research Society Ltd. All rights reserved.
Resumo:
This paper proposes a new framework for evaluating the performance of employment offices based on non-parametric technique of data envelopment analysis. This framework is explained using the assessment of technical efficiency of 82 employment offices in Tunisia which are under the direction of the National Agency for Employment and Independent Work. We further investigated the exogenous factors that may explain part of the variation in efficiency scores using a bootstrapping approach in period January 2006 to December 2008. Given the specialisation of employment offices, we used the proposed approach for the efficiency evaluation of graduate employment offices and multi-services employment offices, separately.
Resumo:
Data envelopment analysis (DEA) has been proven as an excellent data-oriented efficiency analysis method for comparing decision making units (DMUs) with multiple inputs and multiple outputs. In conventional DEA, it is assumed that the status of each measure is clearly known as either input or output. However, in some situations, a performance measure can play input role for some DMUs and output role for others. Cook and Zhu [Eur. J. Oper. Res. 180 (2007) 692–699] referred to these variables as flexible measures. The paper proposes an alternative model in which each flexible measure is treated as either input or output variable to maximize the technical efficiency of the DMU under evaluation. The main focus of this paper is on the impact that the flexible measures has on the definition of the PPS and the assessment of technical efficiency. An example in UK higher education intuitions shows applicability of the proposed approach.
Resumo:
In many real applications of Data Envelopment Analysis (DEA), the decision makers have to deteriorate some inputs and some outputs. This could be because of limitation of funds available. This paper proposes a new DEA-based approach to determine highest possible reduction in the concern input variables and lowest possible deterioration in the concern output variables without reducing the efficiency in any DMU. A numerical example is used to illustrate the problem. An application in banking sector with limitation of IT investment shows the usefulness of the proposed method. © 2010 Elsevier Ltd. All rights reserved.