252 resultados para erbium-doped fiber laser (EDFL)
Resumo:
We have proposed and demonstrated a nonlinear polarization-rotation-based fiber laser with two different operation states: passive mode-locking and multiwavelength emission. The intensity-dependent transmission or loss induced by nonlinear polarization rotation accounts for the distinct operation regimes. Our experiment results indicate that both passively mode-locked pulses and continuous-wave multiwavelength can be generated from the same fiber laser just through adjusting polarizations. Another characteristic of the current multiwavelength laser is that the used periodic filter is a birefringence fiber filter, which facilitates all-fiber integration of the fiber laser, so it is a potential multifunction laser source with all-fiber configuration and convenient manipulation. © 2008 IEEE.
Resumo:
We have proposed and demonstrated a multiwavelength fiber laser based on nonlinear polarization rotation (NPR). The mechanism for stable room-temperature multiwavelength operation contributes to the ability of the intensity-dependent loss in NPR to effectively alleviate mode competition. In addition, through tuning the birefringence fiber filter, the lasing wavelength can be accurately tuned in the free spectrum range of the in-line periodic filter.
Resumo:
Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.
Resumo:
In traditional communication systems the transmission medium is considered as a given characteristic of the channel, which does not depend on the properties of the transmitter and the receiver. Recent experimental demonstrations of the feasibility of extending the laser cavity over the whole communication link connecting the two parties, forming an ultra-long fiber laser (UFL), have raised groundbreaking possibilities in communication and particularly in secure communications. Here, a 500 km long secure key distribution link based on Raman gain UFL is demonstrated. An error-free distribution of a random key with an average rate of 100 bps between the users is demonstrated and the key is shown to be unrecoverable to an eavesdropper employing either time or frequency domain passive attacks. In traditional communication systems the transmission medium is considered as a given characteristic of the channel, which does not depend on the properties of the transmitter and the receiver. Recent demonstrations of the feasibility of extending the laser cavity over the whole communication link connecting the two parties, forming an ultra-long fiber laser (UFL), have raised groundbreaking possibilities in communication. Here, a 500 km long secure key distribution link based on Raman gain UFL is demonstrated. © 2014 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
We examine the impact of the fiber type and dispersion management on the performance of a 16 × 40 Gb/s dense wavelength-division-multiplexing nonreturn-to-zero transmission system. The transmission line is composed of G.652 or G.655 fiber with periodic dispersion compensation and hybrid Raman erbium-doped fiber amplifier amplification.
Resumo:
Nonlinearity management in transmission lines with periodic dispersion compensation and hybrid Raman-Erbium doped fiber amplification is studied both analytically and numerically. Different transmission/compensating fiber pairs are considered, with particular focus on the SMF/DCF case. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting subnanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves. © 2014 Optical Society of America.
Resumo:
Narrow-band emission of spectral width down to ∼0.05 nm linewidth is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ∼10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning. © 2013 Optical Society of America.
Resumo:
For the first time we report full numerical NLSE-based modeling of generation properties of random distributed feedback fiber laser based on Rayleigh scattering. The model which takes into account the random backscattering via its average strength only describes well power and spectral properties of random DFB fiber lasers. The influence of dispersion and nonlinearity on spectral and statistical properties is investigated. The evidence of non-gaussian intensity statistics is found. © 2013 Optical Society of America.
Resumo:
We present a study on the potential use of ultra-longlasercavities for unrepeateredfiber communication, based on the theory of nonlinearity management. A comparison is offered between the performance of ultra-longlasers and standard bi-directional distributed amplification schemes in nonrepeated transmission. Links based on both traditional (SMF/DCF) and modern Ultrawave transmissionfibers are considered.
Resumo:
A simple technique based on superimposed cavities structure for direct real-time assessment of a DFB fiber laser mode condition during operation is demonstrated and used to provide a cavity mode conditioning feedback mechanism to optimize output performance. Significant improvements to the output performance and robustness are achieved over the entire pump power range without ambient isolation.
Resumo:
Optical millimeter wave generation is realized using dual polarization modes operation from a co-located dual distributed feedback fiber laser configuration. A narrow linewidth optical millimeter wave signal at 32.5 GHz is demonstrated without using complex control mechanism.
Resumo:
We experimentally and theoretically describe formation of random fiber laser's optical spectrum. We propose a new concept of active cycled wave kinetics from which we derive first ever nonlinear kinetic theory describing laser spectrum. © OSA 2015.
Resumo:
Long period fiber grating (LPFG) can be used as active gain controlling device in EDFA. However, LPFGs fabricated in the standard telecom fiber only have a typical temperature sensitivity of 3-10nm/100°C, which may not be sufficient for implementing tuneable filters capable of wide tuning range and high tuning efficiency. In this paper, we report a theoretical and experimental investigation of thermal properties of LPFGs fabricated in B/Ge co-doped optical fiber. We have found that the temperature sensitivity of the LPFGs in the B/Ge fiber is considerably increased compared with those produced in the standard fiber. The LPFGs written in the B/Ge fiber have achieved, on average, one order of magnitude higher sensitivity than that of the LPFGs produced in the standard telecom fiber. We have also identified that the thermal response of LPFG is strongly dependent on the order of the coupled resonant cladding mode. The maximum sensitivity of 1.75nm/°C achieved by the 10th cladding mode of the 240μm LPFG is nearly 24 times that of the minimum value (0.075nm/C) exhibited by the 30th mode of the 34μm LPFG. Such devices may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high temperature resolution.