107 resultados para diode-pump laser
Resumo:
Efficiency of commercial 620 nm InAlGaP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. No efficiency decrease and negligible red shift of the emission wavelength is observed in the whole range of drive currents at nanosecond-range pulses with duty cycles well below 1%. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major mechanism of the LED efficiency reduction at higher pumping, dominating over the electron overflow and Auger recombination.
Resumo:
A thulium-doped all-fiber laser passively mode-locked by the co-action of nonlinear polarization evolution and single-walled carbon nanotubes operating at 1860-1980 nm wavelength band is demonstrated. Pumped with the single-mode laser diode at 1.55 μm laser generates near 500-fs soliton pulses at repetition rate ranging from 6.3 to 72.5 MHz in single-pulse operation regime. Having 3-m long cavity average output power reached 300 mW, giving the peak power of 4.88 kW and the pulse energy of 2.93 nJ with slope efficiency higher than 30%. At a 21.6-m long ring cavity average output power of 117 mW is obtained, corresponding to the pulse energy up to 10.87 nJ and a pulse peak power of 21.7 kW, leading to the higher-order soliton generation.
Resumo:
Operation of a single-clad Dy 3+-doped ZrF 4-BaF 2-LaF 3-AlF 3-NaF (ZBLAN) fiber laser operating at mid-infrared near 3 μm is presented. The laser is pumped by an Yb 3+-doped silica fiber laser centered at 1088 nm. An output of near 0.1 W with a slope efficiency of up to 23% with respect to absorbed pump power was measured. The laser performance, theoretical modeling and laser spectrum of Dy fiber laser system with respect to various cavity losses are studied. The experimental slope efficiency is more than 4.5 times higher than the previous demonstration, and is 64% of the Stokes efficiency limit. The efficiency was improved by using cavity mirrors of reflectivities of 99 and 50%. The emission central wavelength and spectral width are found to be dependent on the pump power and output coupler, reflectivity. © 2011 by Astro Ltd., published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA.
Resumo:
We experimentally demonstrate pabively Q-switched erbium-doped fiber laser (EDFL) operation using a saturable absorber (SA) based on Fe3O4 nanoparticles (FONPs). As a type of transition metal oxide, the FONPs have a large nonlinear optical response and fast response time. The FONPbased SA pobebes a modulation depth of 8.2% and nonsaturable absorption of 56.6%. Stable pabively Q-switched EDFL pulses with an output pulse energy of 23.76 nJ, a repetition rate of 33.3 kHz, and a pulse width of 3.2 μs were achieved when the input pump power was 110mW. The laser features a low threshold pump power of > 15mW.
Resumo:
Dual action of quantum-dot saturable absorber and Kerr lens mode locking of a diode-pumped Yb:KGW laser was demonstrated. The laser delivered 105 fs pulses with 2.5 W of average power and >300 kW of peak power.
Resumo:
We present first experimental investigation of fast-intensity dynamics of random distributed feedback (DFB) fiber lasers. We found that the laser dynamics are stochastic on a short time scale and exhibit pronounced fluctuations including generation of extreme events. We also experimentally characterize statistical properties of radiation of random DFB fiber lasers. We found that statistical properties deviate from Gaussian and depend on the pump power.
Resumo:
Raman fibre lasers and converters using the stimulated Raman scattering (SRS) in optical fibre waveguide are attractive for many applications ranging from telecommunications to bio-medical applications [1]. Multiple-wavelength Raman laser sources emitting at two and more wavelengths have been proposed to increase amplification spectrum of Raman fibre amplifiers and to improve noise characteristics [2,3]. Typically, a single fibre waveguide is used in such devices while multi-wavelength generation is achieved by employing corresponding number of fibre Bragg grating (FBG) pairs forming laser resonator. This approach, being rather practical, however, might not provide a good level of cross coherence between radiation generated at different wavelengths due to difference in FBGs and random phase fluctuations between the two wavelengths. In this work we examine a scheme of two-wavelength Raman fibre laser with high-Q cavity based on spectral intracavity broadening [3]. We demonstrate feasibility of such configuration and perform numerical analysis clarifying laser operation using an amplitude propagation equation model that accounts for all key physical effects in nonlinear fibre: dispersion, Kerr nonlinearity, Raman gain, depletion of the Raman pump wave and fibre losses. The key idea behind this scheme is to take advantage of the spectral broadening that occurs in optical fibre at high powers. The effect of spectral broadening leads to effective decrease of the FBGs reflectivity and enables generation of two waves in one-stage Raman laser. The output spectrum in the considered high-Q cavity scheme corresponds to two peaks with 0.2 - 1 nm distance between them. © 2011 IEEE.
Resumo:
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8km to generate a Q-switching pulse train operating at 1560.2 nm. A 7.7-km-long dispersion compensating fiber with 584 ps·nm?1km?1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395mW to 422mW, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03 μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422mW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
Resumo:
The thesis presents a detailed study of different Raman fibre laser (RFL) based amplification techniques and their applications in long-haul/unrepeatered coherent transmission systems. RFL based amplifications techniques were characterised from different aspects, including signal/noise power distributions, relative intensity noise (RIN), mode structures of induced Raman fibre lasers, and so on. It was found for the first time that RFL based amplification techniques could be divided into three categories in terms of the fibre laser regime, which were Fabry-Perot fibre laser with two FBGs, weak Fabry-Perot fibre laser with one FBG and very low reflection near the input, and random distributed feedback (DFB) fibre laser with one FBG. It was also found that lowering the reflection near the input could mitigate the RIN of the signal significantly, thanks to the reduced efficiency of the Stokes shift from the FW-propagated pump. In order to evaluate the transmission performance, different RFL based amplifiers were evaluated and optimised in long-haul coherent transmission systems. The results showed that Fabry-Perot fibre laser based amplifier with two FBGs gave >4.15 dB Q factor penalty using symmetrical bidirectional pumping, as the RIN of the signal was increased significantly. However, random distributed feedback fibre laser based amplifier with one FBG could mitigate the RIN of the signal, which enabled the use of bidirectional second order pumping and consequently give the best transmission performance up to 7915 km. Furthermore, using random DFB fibre laser based amplifier was proved to be effective to combat the nonlinear impairment, and the maximum reach was enhanced by >28% in mid-link single/dual band optical phase conjugator (OPC) transmission systems. In addition, unrepeatered transmission over >350 km fibre length using RFL based amplification technique were presented experimentally using DP-QPSK and DP-16QAM transmitter.
Resumo:
The hybrid action of quantum-dot saturable absorber and Kerr-lens mode locking in a diode-pumped Yb:KGW laser was demonstrated. Using a quantum-dot saturable absorber with a 0.7% (0.5%) modulation depth, the mode-locked laser delivered 90 fs (93 fs) pulses with 3.2 W (2.9 W) of average power at the repetition rate of 77 MHz, corresponding to 462 kW (406 kW) of peak power and 41 nJ (38 nJ) of pulse energy. To the best of our knowledge, this represents the highest average and peak powers generated to date from quantum-dot saturable absorber-based mode-locked lasers.
Resumo:
We demonstrate an ultra-compact, room-Temperature, continuous-wave, broadly-Tunable dual-wavelength InAs/GaAs quantum-dot external-cavity diode laser in the spectral region between 1150 nm and 1301 nm with maximum output power of 280 mW. This laser source generating two modes with tunable difference-frequency (300 GHz-30 THz) has a great potential to replace commonly used bulky lasers for THz generation in photomixer devices.
Resumo:
We show experimentally a 57nm gain bandwidth for an ultra-long Raman fiber laser based amplification technique using only a single pump wavelength. The enhanced gain bandwidth and gain flatness is investigated for single and multi-cavity designs. ©2010 IEEE.
Resumo:
A pulse–pulse interaction that leads to rogue wave (RW) generation in lasers was previously attributed either to soliton–soliton or soliton–dispersive-wave interaction. The beating between polarization modes in the absence of a saturable absorber causes similar effects. Accounting for these polarization modes in a laser resonator is the purpose of the distributed vector model of laser resonators. Furthermore, high pump power, high amplitude, and short pulse duration are not necessary conditions to observe pulse attraction, repulsion, and collisions and the resonance exchange of energy between among them. The regimes of interest can be tuned just by changing the birefringence in the cavity with the pump power slightly higher than the laser threshold. This allows the observation of a wide range of RW patterns in the same experiment, as well as to classify them. The dynamics of the interaction between pulses leads us to the conclusion that all of these effects occur due to nonlinearity induced by the inverse population in the active fiber as well as an intrinsic nonlinearity in the passive part of the cavity. Most of the mechanisms of pulse–pulse interaction were found to be mutually exclusive. This means that all the observed RW patterns, namely, the “lonely,” “twins,” “three sisters,” and “cross,” are probably different cases of the same process.
Investigating optical complexity of the phase transition in the intensity of a fibre laser radiation
Resumo:
Fibre lasers have been shown to manifest a laminar-to-turbulent transition when increasing its pump power. In order to study the dynamical complexity of this transition we use advanced statistical tools of time-series analysis. We apply ordinal analysis and the horizontal visibility graph to the experimentally measured laser output intensity. This reveal the presence of temporal correlations during the transition from the laminar to the turbulent lasing regimes. Both methods allow us to unveil coherent structures with well defined time-scales and strong correlations both, in the timing of the laser pulses and in their peak intensities.
Resumo:
A compact, all-room-temperature, widely tunable, continuous wave laser source in the green spectral region (502.1–544.2 nm) with a maximum output power of 14.7 mW is demonstrated. This was made possible by utilizing second-harmonic generation (SHG) in a periodically poled potassium titanyl phosphate (PPKTP) crystal waveguide pumped by a quantum-well external-cavity fiber-coupled diode laser and exploiting the multimode-matching approach in nonlinear crystal waveguides. The dual-wavelength SHG in the wavelength region between 505.4 and 537.7 nm (with a wavelength difference ranging from 1.8 to 32.3 nm) and sum-frequency generation in a PPKTP waveguide is also demonstrated.