172 resultados para Soliton
Resumo:
We demonstrate a novel dual-wavelength erbium-fiber laser that uses a single nonlinear-optical loop mirror modulator to simultaneously modelock two cavities with chirped fiber Bragg gratings as end mirrors. We show that this configuration produces synchronized soliton pulse trains with an ultra-low RMS inter-pulse-stream timing jitter of 620 fs enabling application to multiwavelength systems at data rates in excess of 130 Gb/s.
Resumo:
We demonstrate bandpass nonlinear switching, using a novel device configuration based on a nonlinear-optical loop mirror and an in-fiber Bragg grating. Self-switching is demonstrated in the soliton regime by use of an asymmetrically arranged in-fiber Bragg grating as a wavelength-selective element. In addition, we adapt the configuration to perform efficient two-wavelength switching.
Resumo:
The WDM properties of dispersion managed (DM) solitons and the reduction in Gordon-Haus jitter means that it is possible to contemplate multiple channels each at 10 Gbit/s for transoceanic distances without the need for elaborate soliton control. This paper will concentrate on fundamental principles of DM solitons, but will use these principles to indicate optimum maps for future high-speed soliton systems.
Resumo:
Communications engineers are learning to create an electromagnet wave at will, to transmit information. This wave, the optical soliton, is the subject of astounding recent developments in nonlinear optics and lasers. The author describes the principles behind the use of solitons in optical communications and shows that in the context of such communications the most important property of solitons is that they are extremely stable. Not only do they not disperse, but an encounter with a perturbation (e.g. a joint in optical fibre) will usually leave the soliton unaltered.
Resumo:
This thesis investigates the physical behaviour of solitons in wavelength division multiplexed (WDM) systems with dispersion management in a wide range of dispersion regimes. Background material is presented to show how solitons propagate in optical fibres, and key problems associated with real systems are outlined. Problems due to collision induced frequency shifts are calculated using numerical simulation, and these results compared with analytical techniques where possible. Different two-step dispersion regimes, as well as the special cases of uniform and exponentially profiled systems, are identified and investigated. In shallow profile, the constituent second-order dispersions in the system are always close to the average soliton value. It is shown that collision-induced frequency shifts in WDM soliton transmission systems are reduced with increasing dispersion management. New resonances in the collision dynamics are illustrated, due to the relative motion induced by the dispersion map. Consideration of third-order dispersion is shown to modify the effects of collision-induced timing jitter and third-order compensation investigated. In all cases pseudo-phase-matched four-wave mixing was found to be insignificant compared to collision induced frequency shift in causing deterioration of data. It is also demonstrated that all these effects are additive with that of Gordon-Haus jitter.
Resumo:
This thesis examines options for high capacity all optical networks. Specifically optical time division multiplexed (OTDM) networks based on electro-optic modulators are investigated experimentally, whilst comparisons with alternative approaches are carried out. It is intended that the thesis will form the basis of comparison between optical time division multiplexed networks and the more mature approach of wavelength division multiplexed networks. Following an introduction to optical networking concepts, the required component technologies are discussed. In particular various optical pulse sources are described with the demanding restrictions of optical multiplexing in mind. This is followed by a discussion of the construction of multiplexers and demultiplexers, including favoured techniques for high speed clock recovery. Theoretical treatments of the performance of Mach Zehnder and electroabsorption modulators support the design criteria that are established for the construction of simple optical time division multiplexed systems. Having established appropriate end terminals for an optical network, the thesis examines transmission issues associated with high speed RZ data signals. Propagation of RZ signals over both installed (standard fibre) and newly commissioned fibre routes are considered in turn. In the case of standard fibre systems, the use of dispersion compensation is summarised, and the application of mid span spectral inversion experimentally investigated. For green field sites, soliton like propagation of high speed data signals is demonstrated. In this case the particular restrictions of high speed soliton systems are discussed and experimentally investigated, namely the increasing impact of timing jitter and the downward pressure on repeater spacings due to the constraint of the average soliton model. These issues are each addressed through investigations of active soliton control for OTDM systems and through investigations of novel fibre types respectively. Finally the particularly remarkable networking potential of optical time division multiplexed systems is established, and infinite node cascadability using soliton control is demonstrated. A final comparison of the various technologies for optical multiplexing is presented in the conclusions, where the relative merits of the technologies for optical networking emerges as the key differentiator between technologies.
Resumo:
The development of an all-optical communications infrastructure requires appropriate optical switching devices and supporting hardware. This thesis presents several novel fibre lasers which are useful pulse sources for high speed optical data processing and communications. They share several attributes in common: flexibility, stability and low-jitter output. They all produce short (picosecond) and are suitable as sources for soliton systems. The lasers are all-fibre systems using erbium-doped fibre for gain, and are actively-modelocked using a dual-wavelength nonlinear optical loop mirror (NOLM) as a modulator. Control over the operating wavelength and intra-cavity dispersion is obtained using a chirped in-fibre Bragg grating.Systems operating both at 76MHz and gigahertz frequencies are presented, the latter using a semiconductor laser amplifier to enhance nonlinear action in the loop mirror. A novel dual-wavelength system in which two linear cavities share a common modulator is presented with results which show that the jitter between the two wavelengths is low enough for use in switching experiments with data rates of up to 130Gbit/s.
Resumo:
This thesis investigates the feasibility of soliton transmission at 1150nm over standard fibre. This is done using a dispersion compensating fibre module in each amplifier span to compensate for the high dispersion. The basic principles of soliton propagation in optical fibre are discussed within this thesis, followed by an introduction to advantages of dispersion management. In the experimental chapter single channel transmission results are presented in 10Gbit/s and 40Gbit/s. At 10Gbit/s the effects of dispersion management on the power dispersion relationship for solitons are investigated. The detrimental effects of soliton-soliton interactions, which are increased due to the greater overlap breathing solitons are discussed. A technique for reducing the soliton-soliton interactions through amplifier positioning is presented as a solution to this problem. The experiments demonstrate the feasibility of using standard fibre for transmission over trans-oceanic distances at 10Gbit/s. The 40Gbit/s experiment demonstrates transmission over sufficient distance for an terrestrial system. Also contained within this thesis are experimental results showing transmission of solitons over dispersion shifted fibre using a novel technique that makes use of the non-linear polarisation rotation of the soliton in the fibre. This is used to generate the effect of saturable absorption, allowing transmission distances of 200,000km to be achieved.
Resumo:
This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.
Resumo:
This thesis presents the results of numerical modelling of ultra high-speed transmission using DM solitons. The theory of propagation in optical fibres is presented with specific reference to optical communication systems. This theory is then expanded to. incorporate dispersion-managed transmission and the dispersion managed soliton. The first part of this work focuses on ultra high-speed dispersion managed soliton propagation in short period dispersion maps. Initially, the cbaracteristics .of dispersion managed soliton propagation in short period dispersion maps are contrasted to those of the more conventional dispersion managed regime. These properties are then utilised to investigate transmission at single channel data rates of 80 Gbit/s, 160 Gbit/s and 320 Gbit/s. For all three data rates, the tolerable limits for transmission over 1000 km, 3000 km and·transoceanic distances are defined. A major limitation of these higher bjt rate systems arises from the problem of noise-induced interactions, which is where the.accumulation of timing jitter causes neighbouring dispersion-managed solitons to interact. In addition, the systems become more sensitive to initial conditions as the data rate increases, .. The second part of the work focuses on contrasting the performance of a range of propagation regimes, from quasi-linear through to soliton-like propagation at 40 Gbit/s for both single channel and WDM dispersion managed transmission. The results indicated that whilst the optimal single channel performance was achieved for soliton-like propagation, the optimal WDM performance was achieved for propagation regime that lay between quasi-linear and soliton-like.
Resumo:
This thesis examines experimentally options for optical fibre transmission over oceanic distances. Its format follows the chronological evolution of ultra-long haul optical systems, commencing with opto-electronic regenerators as repeaters, progressing to optically amplified NRZ systems and finally solitonic propagation. In each case recirculating loop techniques are deployed to simplify the transmission experiments. Advances in high speed electronics have allowed regenerators operating at 10 Gbit/s to become a practical reality. By augmenting such devices with optical amplifiers it is possible to greatly enhance the repeater spacing. Work detailed in this thesis has culminated in the propagation of 10 Gbit/s data over 400,000 km with a repeater spacing of 160 km. System reliability and robustness are enhanced by the use of a directly modulated DFB laser transmitter and total insensitivity of the system to the signal state of polarisation. Optically amplified ultra-long haul NRZ systems have taken on particular importance with the impending deployment of TAT 12/13 and TPC 5. The performance of these systems is demonstrated to be primarily limited by analogue impairments such as the accumulation of amplifier noise, polarisation effects and optical non-linearities. These degradations may be reduced by the use of appropriate dispersion maps and by scrambling the transmitted state of signal polarisation. A novel high speed optically passive polarisation scrambler is detailed for the first time. At bit rates in excess of 10 Gbit/s it is shown that these systems are severely limited and do not offer the advantages that might be expected over regenerated links. Propagation using solitons as the data bits appears particularly attractive since the dispersive and non-linear effects of the fibre allow distortion free transmission. However, the generation of pure solitons is difficult but must be achieved if the uncontrolled transmission distance is to be maximised. This thesis presents a new technique for the stabilisation of an erbium fibre ring laser that has aUowed propagation of 2.5 Gbit/s solitons to the theoretical limit of ~ 18,000 km. At higher bit rates temporal jitter becomes a significant impairment and to aUow an increase in the aggregate line rate multiplexing in both time and polarisation domains has been proposed. These techniques are shown to be of only limited benefit in practical systems and ultimately some form of soliton transmission control is required. The thesis demonstrates synchronous retiming by amplitude modulation that has allowed 20 Gbit/s data to propagate 125,000 km error free with an amplifier spacing approaching the soliton period. Ultimately the speed of operation of such systems is limited by the electronics used and, thus, a new form of soliton control is demonstrated using all optical techniques to achieve synchronous phase modulation.
Resumo:
This thesis presents experimental and theoretical work on the use of dark optical solitons as data carriers in communications systems. The background chapters provide an introduction to nonlinear optics, and to dark solitons, described as intensity dips in a bright background, with an asymmetrical phase profile. The motivation for the work is explained, considering both the superior stability of dark solitons and the need for a soliton solution suitable for the normal, rather than the anomalous (bright soliton) dispersion regime. The first chapters present two generation techniques, producing packets of dark solitons via bright pulse interaction, and generating continuous trains of dark pulses using a fibre laser. The latter were not dark solitons, but were suitable for imposition of the required phase shift by virtue of their extreme stability. The later chapters focus on the propagation and control of dark solitons. Their response to periodic loss and gain is shown to result in the exponential growth of spectral sidebands. This may be suppressed by reducing the periodicity of the loss/gain cycle or using periodic filtering. A general study of the response of dark solitons to spectral filtering is undertaken, showing dramatic differences in the behaviour of black and 99.9% grey solitons. The importance of this result is highlighted by simulations of propagation in noisy systems, where the timing jitter resulting from random noise is actually enhanced by filtering. The results of using sinusoidal phase modulation to control pulse position are presented, showing that the control is at the expense of serious modulation of the bright background. It is concluded that in almost every case, dark and bright solitons have very different properties, and to continue to make comparisons would not be so productive as to develop a deeper understanding of the interactions between the dark soliton and its bright background.
Resumo:
Serial and parallel interconnection of photonic devices is integral to the construction of any all-optical data processing system. This thesis presents results from a series of experiments centering on the use of the nonlinear-optical loop mirror (NOLM) switch in architectures for the manipulation and generation of ultrashort pulses. Detailed analysis of soliton switching in a single NOLM and cascade of two NOLM's is performed, centering on primary limitations to device operation, effect of cascading on amplitude response, and impact of switching on the characteristics of incident pulses. By using relatively long input pulses, device failure due to stimulated Raman generation is postponed to demonstrate multiple-peaked switching for the first time. It is found that while cascading leads to a sharpening of the overall switching characteristic, pulse spectral and temporal integrity is not significantly degraded, and emerging pulses retain their essential soliton character. In addition, by including an asymmetrically placed in-fibre Bragg reflector as a wavelength selective loss element in the basic NOLM configuration, both soliton self-switching and dual-wavelength control-pulse switching are spectrally quantised. Results are presented from a novel dual-wavelength laser configuration generating pulse trains with an ultra-low rms inter-pulse-stream timing jitter level of 630fs enabling application in ultrafast switching environments at data rates as high as 130GBits/s. In addition, the fibre NOLM is included in architectures for all-optical memory, demonstrating storage and logical inversion of a 0.5kByte random data sequence; and ultrafast phase-locking of a gain-switched distributed feedback laser at 1.062GHz, the fourteenth harmonic of the system baseband frequency. The stringent requirements for environmental robustness of these architectures highlight the primary weaknesses of the NOLM in its fibre form and recommendations to overcome its inherent drawbacks are presented.
Resumo:
We investigate the feasibility of simultaneous suppressing of the amplification noise and nonlinearity, representing the most fundamental limiting factors in modern optical communication. To accomplish this task we developed a general design optimisation technique, based on concepts of noise and nonlinearity management. We demonstrate the immense efficiency of the novel approach by applying it to a design optimisation of transmission lines with periodic dispersion compensation using Raman and hybrid Raman-EDFA amplification. Moreover, we showed, using nonlinearity management considerations, that the optimal performance in high bit-rate dispersion managed fibre systems with hybrid amplification is achieved for a certain amplifier spacing – which is different from commonly known optimal noise performance corresponding to fully distributed amplification. Required for an accurate estimation of the bit error rate, the complete knowledge of signal statistics is crucial for modern transmission links with strong inherent nonlinearity. Therefore, we implemented the advanced multicanonical Monte Carlo (MMC) method, acknowledged for its efficiency in estimating distribution tails. We have accurately computed acknowledged for its efficiency in estimating distribution tails. We have accurately computed marginal probability density functions for soliton parameters, by numerical modelling of Fokker-Plank equation applying the MMC simulation technique. Moreover, applying a powerful MMC method we have studied the BER penalty caused by deviations from the optimal decision level in systems employing in-line 2R optical regeneration. We have demonstrated that in such systems the analytical linear approximation that makes a better fit in the central part of the regenerator nonlinear transfer function produces more accurate approximation of the BER and BER penalty. We present a statistical analysis of RZ-DPSK optical signal at direct detection receiver with Mach-Zehnder interferometer demodulation
Resumo:
We consider the random input problem for a nonlinear system modeled by the integrable one-dimensional self-focusing nonlinear Schrödinger equation (NLSE). We concentrate on the properties obtained from the direct scattering problem associated with the NLSE. We discuss some general issues regarding soliton creation from random input. We also study the averaged spectral density of random quasilinear waves generated in the NLSE channel for two models of the disordered input field profile. The first model is symmetric complex Gaussian white noise and the second one is a real dichotomous (telegraph) process. For the former model, the closed-form expression for the averaged spectral density is obtained, while for the dichotomous real input we present the small noise perturbative expansion for the same quantity. In the case of the dichotomous input, we also obtain the distribution of minimal pulse width required for a soliton generation. The obtained results can be applied to a multitude of problems including random nonlinear Fraunhoffer diffraction, transmission properties of randomly apodized long period Fiber Bragg gratings, and the propagation of incoherent pulses in optical fibers.