103 resultados para Knowledge management (KM)
Resumo:
This paper explores the micro-level processes of interaction across organisational boundaries and occupational communities. Based on a retrospective processual analysis, this study shows that in filling knowledge gaps, organisations put in place a series of knowledge mechanisms, which lead them to socially interact with their alliance partners. Both the deployment of existing knowledge and the creation of new knowledge are based on processes of interaction, which derive from the interplay between alliance actors. It is suggested that through both social interaction and the use of boundary objects, individuals are able to communicate, engage in problem-solving activities and share their ideas to fill knowledge gaps.
Resumo:
We propose that strategic human resource management (SHRM) practices nurture a context of knowledge sharing where tacit knowledge can be turned into explicit knowledge and that this type of knowledge sharing promotes innovative behaviours. We draw on the fields of knowledge management and international human resource management to show why organisations need to turn tacit knowledge into explicit knowledge to gain most from their workforce skills and creativity. Findings from a couple of cross-national case studies show how SHRM promotes employees to interact and share knowledge so that there is a conversion of tacit knowledge to explicit knowledge that informs innovative behaviour. In Case Study 1, the focus is on a UK local authority that implemented a bundle of SHRM practices through a people management programme, which resulted in a flattened management structure. In Case Study 2, the focus is on a geriatric hospital in Malta that introduced a management presence to an interdisciplinary team working to improve patient care. The analysis also highlights the methodological contribution of qualitative research for enabling inductive enquiry that yields emergent themes - an approach not typically seen in SHRM innovation studies. © 2013 Taylor & Francis.
Resumo:
Procedural knowledge is the knowledge required to perform certain tasks. It forms an important part of expertise, and is crucial for learning new tasks. This paper summarises existing work on procedural knowledge acquisition, and identifies two major challenges that remain to be solved in this field; namely, automating the acquisition process to tackle bottleneck in the formalization of procedural knowledge, and enabling machine understanding and manipulation of procedural knowledge. It is believed that recent advances in information extraction techniques can be applied compose a comprehensive solution to address these challenges. We identify specific tasks required to achieve the goal, and present detailed analyses of new research challenges and opportunities. It is expected that these analyses will interest researchers of various knowledge management tasks, particularly knowledge acquisition and capture.
Resumo:
In this demonstration, we will present a semantic environment called the K-Box. The K-Box supports the lightweight integration of knowledge tools, with a focus on semantic tools, but with the flexibility to integrate natural language and conventional tools. We discuss the implementation of the framework, and two existing applications, including details of a new application for developers of semantic workflows. The demonstration will be of interest to developers and researchers of ontology-based knowledge management systems, and semantic desktops, and to analysts working with cross-media information. © 2011 ACM.
Resumo:
Despite years of effort in building organisational taxonomies, the potential of ontologies to support knowledge management in complex technical domains is under-exploited. The authors of this chapter present an approach to using rich domain ontologies to support sense-making tasks associated with resolving mechanical issues. Using Semantic Web technologies, the authors have built a framework and a suite of tools which support the whole semantic knowledge lifecycle. These are presented by describing the process of issue resolution for a simulated investigation concerning failure of bicycle brakes. Foci of the work have included ensuring that semantic tasks fit in with users’ everyday tasks, to achieve user acceptability and support the flexibility required by communities of practice with differing local sub-domains, tasks, and terminology.
Resumo:
In current organizations, valuable enterprise knowledge is often buried under rapidly expanding huge amount of unstructured information in the form of web pages, blogs, and other forms of human text communications. We present a novel unsupervised machine learning method called CORDER (COmmunity Relation Discovery by named Entity Recognition) to turn these unstructured data into structured information for knowledge management in these organizations. CORDER exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We discuss the problems associated with evaluating unsupervised learners and report our initial evaluation experiments in an expert evaluation, a quantitative benchmarking, and an application of CORDER in a social networking tool called BuddyFinder.
Resumo:
The work reported in this paper is part of a project simulating maintenance operations in an automotive engine production facility. The decisions made by the people in charge of these operations form a crucial element of this simulation. Eliciting this knowledge is problematic. One approach is to use the simulation model as part of the knowledge elicitation process. This paper reports on the experience so far with using a simulation model to support knowledge management in this way. Issues are discussed regarding the data available, the use of the model, and the elicitation process itself.
Resumo:
Purpose – This paper describes a “work in progress” research project being carried out with a public health care provider in the UK, a large NHS hospital Trust. Enhanced engagement with patients is one of the Trust’s core principles, but it is recognised that much more needs to be done to achieve this, and that ICT systems may be able to provide some support. The project is intended to find ways to better capture and evaluate the “voice of the patient” in order to lead to improvements in health care quality, safety and effectiveness. Design/methodology/approach – We propose to investigate the use of a patient-orientated knowledge management system (KMS) in managing knowledge about and from patients. The study is a mixed methods (quantitative and qualitative) investigation based on traditional action research, intended to answer the following three research questions: (1) How can a KMS be used as a mechanism to capture and evaluate patient experiences to provoke patient service change (2) How can the KMS assist in providing a mechanism for systematising patient engagement? (3) How can patient feedback be used to stimulate improvements in care, quality and safety? Originality/value –This methodology aims to involve patients at all phases of the study from its initial design onwards, thus leading to an understanding of the issues associated with using a KMS to manage knowledge about and for patients that is driven by the patients themselves. Practical implications – The outcomes of the project for the collaborating hospital will be firstly, a system for capturing and evaluating knowledge about and from patients, and then as a consequence, improved outcomes for both the patients and the service provider. More generally, it will produce a set of guidelines for managing patient knowledge in an NHS hospital that have been tested in one case example.
Resumo:
This PhD thesis analyses networks of knowledge flows, focusing on the role of indirect ties in the knowledge transfer, knowledge accumulation and knowledge creation process. It extends and improves existing methods for mapping networks of knowledge flows in two different applications and contributes to two stream of research. To support the underlying idea of this thesis, which is finding an alternative method to rank indirect network ties to shed a new light on the dynamics of knowledge transfer, we apply Ordered Weighted Averaging (OWA) to two different network contexts. Knowledge flows in patent citation networks and a company supply chain network are analysed using Social Network Analysis (SNA) and the OWA operator. The OWA is used here for the first time (i) to rank indirect citations in patent networks, providing new insight into their role in transferring knowledge among network nodes; and to analyse a long chain of patent generations along 13 years; (ii) to rank indirect relations in a company supply chain network, to shed light on the role of indirectly connected individuals involved in the knowledge transfer and creation processes and to contribute to the literature on knowledge management in a supply chain. In doing so, indirect ties are measured and their role as means of knowledge transfer is shown. Thus, this thesis represents a first attempt to bridge the OWA and SNA fields and to show that the two methods can be used together to enrich the understanding of the role of indirectly connected nodes in a network. More specifically, the OWA scores enrich our understanding of knowledge evolution over time within complex networks. Future research can show the usefulness of OWA operator in different complex networks, such as the on-line social networks that consists of thousand of nodes.
Resumo:
The sharing of near real-time traceability knowledge in supply chains plays a central role in coordinating business operations and is a key driver for their success. However before traceability datasets received from external partners can be integrated with datasets generated internally within an organisation, they need to be validated against information recorded for the physical goods received as well as against bespoke rules defined to ensure uniformity, consistency and completeness within the supply chain. In this paper, we present a knowledge driven framework for the runtime validation of critical constraints on incoming traceability datasets encapuslated as EPCIS event-based linked pedigrees. Our constraints are defined using SPARQL queries and SPIN rules. We present a novel validation architecture based on the integration of Apache Storm framework for real time, distributed computation with popular Semantic Web/Linked data libraries and exemplify our methodology on an abstraction of the pharmaceutical supply chain.
Resumo:
Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.
Resumo:
Purpose: This paper aims to explore the role of internal and external knowledgebased linkages across the supply chain in achieving better operational performance. It investigates how knowledge is accumulated, shared, and applied to create organization-specific knowledge resources that increase and sustain the organization's competitive advantage. Design/methodology/approach: This paper uses a single case study with multiple, embedded units of analysis, and the social network analysis (SNA) to demonstrate the impact of internal and external knowledge-based linkages across multiple tiers in the supply chain on the organizational operational performance. The focal company of the case study is an Italian manufacturer supplying rubber components to European automotive enterprises. Findings: With the aid of the SNA, the internal knowledge-based linkages can be mapped and visualized. We found that the most central nodes having the most connections with other nodes in the linkages are the most crucial members in terms of knowledge exploration and exploitation within the organization. We also revealed that the effective management of external knowledge-based linkages, such as buyer company, competitors, university, suppliers, and subcontractors, can help improve the operational performance. Research limitations/implications: First, our hypothesis was tested on a single case. The analysis of multiple case studies using SNA would provide a deeper understanding of the relationship between the knowledge-based linkages at all levels of the supply chain and the integration of knowledge. Second, the static nature of knowledge flows was studied in this research. Future research could also consider ongoing monitoring of dynamic linkages and the dynamic characteristic of knowledge flows. Originality/value: To the best of our knowledge, the phrase 'knowledge-based linkages' has not been used in the literature and there is lack of investigation on the relationship between the management of internal and external knowledge-based linkages and the operational performance. To bridge the knowledge gap, this paper will show the importance of understanding the composition and characteristics of knowledge-based linkages and their knowledge nodes. In addition, this paper will show that effective management of knowledge-based linkages leads to the creation of new knowledge and improves organizations' operational performance.
Resumo:
During group meetings it is often difficult for participants to effectively: share their knowledge to inform the outcome; acquire new knowledge from others to broaden and/or deepen their understanding; utilise all available knowledge to design an outcome; and record (to retain) the rationale behind the outcome to inform future activities. These are difficult because, for example: only one person can share knowledge at once which challenges effective sharing; information overload makes acquisition problematic and can marginalize important knowledge; and intense dialog of conflicting views makes recording more complex.