107 resultados para photonic waveguides
Resumo:
In this paper a microwave photonic filter using superstructured fiber Bragg grating and dispersive fiber is investigated. A theoretical model to describe the transfer function of the filter taking into consideration the spectral width of light source is established. Experiments are carried out to verify the theoretical analysis. Both theoretical and experimental results indicate that due to chromatic dispersion the source spectral width introduces an additional power penalty to the microwave photonic response of the filter. © 2005 Optical Society of America.
Resumo:
We present an optimization procedure to improve the propagation properties of the depressed cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm can be optimized beyond 3 micro meter for hexagonal WG structures with seven rings of tracks.
Resumo:
We describe how the guiding properties of buried, micro-structured waveguides that can be formed in a lithium niobate crystal by direct femtosecond laser writing can be optimized for low-loss operation in the mid-infrared region beyond 3 μm.
Resumo:
We present a compact, all-room-temperature continuous-wave laser source in the visible spectral region between 574 and 647 nm by frequency doubling of a broadly tunable InAs/GaAs quantum-dot external-cavity diode laser in a periodically poled potassium titanyl phosphate crystal containing three waveguides with different cross-sectional areas (4 × 4, 3 × 5, and 2 μm × 6 μm). The influence of a waveguide's design on tunability, output power, and mode distribution of second-harmonic generated light, as well as possibilities to increase the conversion efficiency via an optimization of a waveguide's cross-sectional area, was systematically investigated. A maximum output power of 12.04 mW with a conversion efficiency of 10.29% at 605.6 nm was demonstrated in the wider waveguide with the cross-sectional area of 4 μm × 4 μm.
Resumo:
Chalcogenide optical fibers are currently undergoing intensive investigation with the aim of exploiting the excellent glass transmission and nonlinear characteristics in the near- and mid-infrared for several applications. Further enhancement of these properties can be obtained, for a particular application, with optical fibers specifically designed that are capable of providing low effective area together with a properly tailored dispersion, matching the characteristics of the laser sources used to excite nonlinear effects. Suspended-core photonic crystal fibers are ideal candidates for nonlinear applications, providing small-core waveguides with large index contrast and tunable dispersion. In this paper, the dispersion properties of As2S3 suspended-core fibers are numerically analyzed, taking into account, for the first time, all the structural parameters, including the size and the number of the glass bridges. The results show that a proper design of the cladding struts can be exploited to significantly change the fiber properties, altering the maximum value of the dispersion parameter and shifting the zero-dispersion wavelengths over a range of 400 nm.
Resumo:
A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (~40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10-5. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
During the last decade, microfabrication of photonic devices by means of intense femtosecond (fs) laser pulses has emerged as a novel technology. A common requirement for the production of these devices is that the refractive index modification pitch size should be smaller than the inscribing wavelength. This can be achieved by making use of the nonlinear propagation of intense fs laser pulses. Nonlinear propagation of intense fs laser pulses is an extremely complicated phenomenon featuring complex multiscale spatiotemporal dynamics of the laser pulses. We have utilized a principal approach based on finite difference time domain (FDTD) modeling of the full set of Maxwell's equations coupled to the conventional Drude model for generated plasma. Nonlinear effects are included, such as self-phase modulation and multiphoton absorption. Such an approach resolves most problems related to the inscription of subwavelength structures, when the paraxial approximation is not applicable to correctly describe the creation of and scattering on the structures. In a representative simulation of the inscription process, the signature of degenerate four wave mixing has been found. © 2012 Optical Society of America.
Resumo:
A long period grating has been fabricated in endlessly single-mode photonic crystal fibre using a spatially-periodic electric arc discharge. The sensing characteristics of the grating have been studied and it was found to possess an insensitivity to temperature, a bend sensitivity of 3.7 nm · m and a strain sensitivity of -2.0 pm/µe.
Resumo:
A series of LPGs with the same period was inscribed by femtosecond laser into photonic crystal fibre with various powers. All suffered post-fabrication spectral evolution at low temperatures, apparently related to inscription power.
Resumo:
We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.
Resumo:
The frequency dependent radio frequency power degradation in direct modulated microwave photonic systems employing uniform period fiber Bragg gratings (FBG) as reflective elements in investigated. Results show implications in terms of the available radio frequency bandwidth and the stability requirements for the FBG.
Resumo:
We experimentally demonstrate Anderson localization for optical pulses in time domain, using a photonic mesh lattice implemented with coupled optical fiber loops. We also discuss interplay of photonic band-gaps and disorder in such lattices. © OSA 2015.
Resumo:
In this work a self-referenced technique for fiberoptic intensity sensors using virtual lock-in amplifiers is proposed and discussed. The topology is compatible with WDM networks so multiple remote sensors can simultaneously be interrogated. A hybrid approach combining both silica fiber Bragg gratings and polymer optical fiber Bragg gratings is analyzed. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown and tested using a selfreferenced configuration based on a power ratio parameter.
Resumo:
Progress on advanced active and passive photonic components that are required for high-speed optical communications over hollow-core photonic bandgap fiber at wavelengths around 2 μm is described in this paper. Single-frequency lasers capable of operating at 10 Gb/s and covering a wide spectral range are realized. A comparison is made between waveguide and surface normal photodiodes with the latter showing good sensitivity up to 15 Gb/s. Passive waveguides, 90° optical hybrids, and arrayed waveguide grating with 100-GHz channel spacing are demonstrated on a large spot-size waveguide platform. Finally, a strong electro-optic effect using the quantum confined Stark effect in strain-balanced multiple quantum wells is demonstrated and used in a Mach-Zehnder modulator capable of operating at 10 Gb/s.
Resumo:
Carbon nanomaterials are an active frontier of research in current nanotechnology. Single wall Carbon Nanotube (SWNT) is a unique material which has already found several applications in photonics, electronics, sensors and drug delivery. This thesis presents a summary of the author’s research on functionalisation of SWNTs, a study of their optical properties, and potential for an application in laser physics. The first significant result is a breakthrough in controlling the size of SWNT bundles by varying the salt concentrations in N-methyl 2-pyrrolidone (NMP) through a salting out effect. The addition of Sodium iodide leads to self-assembly of CNTs into recognizable bundles. Furthermore, a stable dispersion can be made via addition polyvinylpyrrolidone (PVP) polymer to SWNTs-NMP dispersion, which indicates a promising direction for SWNT bundle engineering in organic solvents. The second set of experiments are concerned with enhancement of photoluminescence (PL), through the formation of novel macromolecular complexes of SWNTs with polymethine dyes with emission from enhanced nanotubes in the range of dye excitation. The effect appears to originate from exciton energy transfer within the solution. Thirdly, SWNT base-saturable absorbers (SA) were developed and applied to mode locking of fibre lasers. SWNT-based SAs were applied in both composite and liquid dispersion forms and achieved stable ultrashort generation at 1000nm, 1550nm, and 1800 nm for Ytterbium, Erbium and Thulium-doped fibre laser respectively. The work presented here demonstrates several innovative approaches for development of rapid functionalised SWNT-based dispersions and composites with potential for application in various photonic devices at low cost.