202 resultados para external cavity semiconductor laser


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A pulse–pulse interaction that leads to rogue wave (RW) generation in lasers was previously attributed either to soliton–soliton or soliton–dispersive-wave interaction. The beating between polarization modes in the absence of a saturable absorber causes similar effects. Accounting for these polarization modes in a laser resonator is the purpose of the distributed vector model of laser resonators. Furthermore, high pump power, high amplitude, and short pulse duration are not necessary conditions to observe pulse attraction, repulsion, and collisions and the resonance exchange of energy between among them. The regimes of interest can be tuned just by changing the birefringence in the cavity with the pump power slightly higher than the laser threshold. This allows the observation of a wide range of RW patterns in the same experiment, as well as to classify them. The dynamics of the interaction between pulses leads us to the conclusion that all of these effects occur due to nonlinearity induced by the inverse population in the active fiber as well as an intrinsic nonlinearity in the passive part of the cavity. Most of the mechanisms of pulse–pulse interaction were found to be mutually exclusive. This means that all the observed RW patterns, namely, the “lonely,” “twins,” “three sisters,” and “cross,” are probably different cases of the same process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a microchanneled chirped fiber Bragg grating (MCFBG) is proposed and fabricated through the femtosecond laser-assisted chemical etching. The microchannel (~550 µm) gives access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In the experiment, the transmission bands induced by the reduced effective index in the microchannel region were used to sense the surrounding RI and temperature changes. The experimental results show good agreement with the theoretical analysis. The proposed MCFBG offers enhanced RI sensitivity without degrading the robustness of the device showing good application potential as bio-chemical sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors describe the operation of an actively modelocked Er fibre laser incorporating a chrped in fibre Bragg reflection grating as one end mirror to the cavity, acting as a lumped highly dispersive element. In one oreientation the grating shifted the cavity into normal dispersion regime and pulses of -25ps duration were produced. In the opposite oreintation, the cavity dispersion was anomalous and ~8ps pulses were produced with characterisitics typical of solitons propagating in a periodically perturbed system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a novel high-performance approach to time-division-multiplexing (TDM) fibre Bragg grating (FBG) optical sensors, known as the resonant cavity architecture. A background theory of FBG optical sensing includes several techniques for multiplexing sensors. The limitations of current wavelength-division-multiplexing (WDM) schemes are contrasted against the technological and commercial advantage of TDM. The author’s hypothesis that ‘it should be possible to achieve TDM FBG sensor interrogation using an electrically switched semiconductor optical amplifier (SOA)’ is then explained. Research and development of a commercially viable optical sensor interrogator based on the resonant cavity architecture forms the remainder of this thesis. A fully programmable SOA drive system allows interrogation of sensor arrays 10km long with a spatial resolution of 8cm and a variable gain system provides dynamic compensation for fluctuating system losses. Ratiometric filter- and diffractive-element spectrometer-based wavelength measurement systems are developed and analysed for different commercial applications. The ratiometric design provides a low-cost solution that has picometre resolution and low noise using 4% reflective sensors, but is less tolerant to variation in system loss. The spectrometer design is more expensive, but delivers exceptional performance with picometre resolution, low noise and tolerance to 13dB system loss variation. Finally, this thesis details the interrogator’s peripheral components, its compliance for operation in harsh industrial environments and several examples of commercial applications where it has been deployed. Applications include laboratory instruments, temperature monitoring systems for oil production, dynamic control for wind-energy and battery powered, self-contained sub-sea strain monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents improvements to optical transmission systems through the use of optical solitons as a digital transmission format, both theoretically and experimentally. An introduction to the main concepts and impairments of optical fibre on pulse transmission is included before introducing the concept of solitons in optically amplified communications and the problems of soliton system design. The theoretical work studies two fibre dispersion profiling schemes and a soliton launch improvement. The first provides superior pulse transmission by optimally tailoring the fibre dispersion to better follow the power, and hence nonlinearity, decay and thus allow soliton transmission for longer amplifier spacings and shorter pulse widths than normally possible. The second profiling scheme examines the use of dispersion compensating fibre in the context of soliton transmission over existing, standard fibre systems. The limits for solitons in uncompensated standard fibre are assessed, before the potential benefits of dispersion compensating fibre included as part of each amplifier are shown. The third theoretical investigation provides a simple improvement to the propagation of solitons in a highly perturbed system. By introducing a section of fibre of the correct length prior to the first system amplifier span, the soliton shape can be better coupled into the system thus providing an improved "average soliton" propagation model. The experimental work covers two areas. An important issue for soliton systems is pulse sources. Three potential lasers are studied, two ring laser configurations and one semiconductor device with external pulse shaping. The second area studies soliton transmission using a recalculating loop, reviewing the advantages and draw-backs of such an experiment in system testing and design. One particular example of employing the recirculating loop is also examined, using a novel method of pulse shape stabilisation over long distances with low jitter. The future for nonlinear optical communications is considered with the thesis conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-seeded, gain-switched operation of an InGaN multi-quantum-well diode laser is reported for the first time. Narrow-line, wavelength-tunable, picosecond pulses have been generated from a standard, uncoated diode laser with an external feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple technique for direct real-time assessment of a fiber laser cavity-mode condition during operation is demonstrated. Mode stabilization and optimization with this cavity-mode monitoring and conditioning feedback scheme shows significant improvements to the output performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and demonstrate a single- and dual-wavelength switchable erbium-doped fiber laser (EDFL) by utilizing intracavity polarization selective filters based on tilted fiber gratings (TFGs). In the cavity, one 45° TFG functions as an in-fiber polarizer and the other 77° TFG is used as a fiber polarization dependent loss (PDL) filter. The combined polarization effect from these two TFGs enables the laser to switch between the single- and the dual-wavelength operation with a single-polarization state at room temperature. The laser output at each wavelength shows an optical signal-to-noise ratio (OSNR) of >60 dB, a side mode suppression ratio (SMSR) of >50 dB, and a polarization extinction ratio of ~35 dB. The proposed EDFL can give stable output under laboratory conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microwave signal generation by using the photonic beating from a phase-shift fiber Bragg grating (PS-FBG)-based dual-wavelength laser is proposed and experimentally demonstrated. The dual-wavelength laser is formed by a linear cavity, in which a PS-FBG is used as a dual-wavelength selective component. Transversal loading on the PS-FBG enhances the birefringence of the optical fiber and consequently makes the transmission peak of the PS-FBG splitting into two sharp transmission peaks of orthogonal polarizations. The wavelength spacing between the two transmission peaks increases with the transversal loading on the PS-FBG, thus making the polarization beating frequency increase. This property is exploited in a transversal loading sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first experimental demonstration of a Raman fibre laser operation with a resolvable ~0.6 kHz mode spacing operating at 1551nm. Our laser has a record cavity length of 165 km.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the Rayleigh scattering effects in ultra-long Raman fibre laser. It has been found that in a long fibre cavity (-100 km) the distributed feedback due to Rayleigh back scattering at propagation of light between fibre Bragg grating reflectors may be comparable with the lumped feedback provided by the FBG itself. As a result, Raman lasing in the fibre span limited by lumped (FBG) reflector at one side only appears possible due to significant reflection from the RS-based "random" distributed mirror at the other side. Thus, it concludes that a distributed Rayleigh scattering "random" mirror can form a cavity together with a single FBG spliced to the opposite cavity end.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of random lasers making use of multiple scattering in amplifying disordered media to generate coherent light has attracted a great deal of attention in recent years. Here, we demonstrate a fibre laser with a mirrorless open cavity that operates via Rayleigh scattering, amplified through the Raman effect. The fibre waveguide geometry provides transverse confinement and effectively one-dimensional random distributed feedback, leading to the generation of a stationary near-Gaussian beam with a narrow spectrum, and with efficiency and performance comparable to regular lasers. Rayleigh scattering due to inhomogeneities within the glass structure of the fibre is extremely weak, making the operation and properties of the proposed random distributed feedback lasers profoundly different from those of both traditional random lasers and conventional fibre lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present experimental demonstration of a 200-km-long, dual-wavelength Raman laser utilizing two slightly different-wavelength fiber Bragg gratings, one on each side of the fiber span. The obtained results clearly prove the generation of two independent Raman lasers with a distributed “random” Rayleigh scattering mirror forming a cavity together with each of the individual fiber Bragg grating reflectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a theoretical study of an interferometric system in which half of a collimated beam from a broadband optical source is intercepted by a glass slide, the whole beam subsequently being incident on a diffraction grating and the resulting spectrum being viewed using a linear CCD array. Using Fourier theory, we derive the expression of the intensity distribution across the CCD array. This expression is then examined for non-cavity and cavity sources for different cases determined by the direction from which the slide is inserted into the beam and the source bandwidth. The theoretical model shows that the narrower the source linewidth, the higher the deviation of the Talbot bands' visibility (as it is dependent on the path imbalance) from the previously known triangular shape. When the source is a laser diode below threshold, the structure of the CCD signal spectrum is very complex. The number of components present simultaneously increases with the number of grating lines and decreases with the laser cavity length. The model also predicts the appearance of bands in situations not usually associated with Talbot bands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on inscription of microchannels of different widths in optical fiber using femtosecond (fs) laser inscription assisted chemical etching and the narrowest channel has been created with a width down to only 1.2µm. Microchannels with 5µm and 35µm widths were fabricated together with Fabry-Pérot (FP) cavities formed by UV laser written fiber Bragg gratings (FBGs), creating high function and linear response refractometers. The device with a 5µm microchannel has exhibited a refractive index (RI) detection range up to 1.7, significantly higher than all fiber grating RI sensors. In addition, the microchannel FBG FP structures have been theoretically simulated showing excellent agreement with experimental measured characteristics.