88 resultados para capillary pumped loop


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated numerically and experimentally a fiber Bragg grating (FBG) sensor interrogation scheme utilizing a linear chirped grating-based Sagnac loop as a wavelength-dependent receiver. The scheme is suitable for both static and dynamic sensor interrogation with advantages of stable and linear readout response and easily-adjustable sensing resolution and dynamic range. Static and dynamic strain resolutions as high as ± 4.2 με and 0.406 με/√ Hz have been demonstrated using this scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a compact, all-room-temperature continuous-wave laser source in the visible spectral region between 574 and 647 nm by frequency doubling of a broadly tunable InAs/GaAs quantum-dot external-cavity diode laser in a periodically poled potassium titanyl phosphate crystal containing three waveguides with different cross-sectional areas (4 × 4, 3 × 5, and 2 μm × 6 μm). The influence of a waveguide's design on tunability, output power, and mode distribution of second-harmonic generated light, as well as possibilities to increase the conversion efficiency via an optimization of a waveguide's cross-sectional area, was systematically investigated. A maximum output power of 12.04 mW with a conversion efficiency of 10.29% at 605.6 nm was demonstrated in the wider waveguide with the cross-sectional area of 4 μm × 4 μm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate multiple-peaked switching in a nonlinear-optical loop mirror and present an experimental investigation of device cascading in the soliton regime based on a sequence of two independent nonlinear-optical loop mirrors. Cascading leads to an enhanced switching response with sharper switching edges, flattened peaks, and increased interpeak extinction ratios. We observe that pulses emerging from the cascade retain the sech2 temporal profile of a soliton with minimal degradation in the spectral characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate simultaneous demultiplexing, data regeneration and clock recovery at 10Gbits/s, using a single semiconductor optical amplifier–based nonlinear-optical loop mirror in a phase-locked loop configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, quantum-dot (QD) semiconductor lasers attract significant interest in many practical applications due to their advantages such as high-power pulse generation because to the high gain efficiency. In this work, the pulse shape of an electrically pumped QD-laser under high current is analyzed. We find that the slow rise time of the pulsed pump may significantly affect the high intensity output pulse. It results in sharp power dropouts and deformation of the pulse profile. We address the effect to dynamical change of the phase-amplitude coupling in the proximity of the excited state (ES) threshold. Under 30ns pulse pumping, the output pulse shape strongly depends on pumping amplitude. At lower currents, which correspond to lasing in the ground state (GS), the pulse shape mimics that of the pump pulse. However, at higher currents the pulse shape becomes progressively unstable. The instability is greatest when in proximity to the secondary threshold which corresponds to the beginning of the ES lasing. After the slow rise stage, the output power sharply drops out. It is followed by a long-time power-off stage and large-scale amplitude fluctuations. We explain these observations by the dynamical change of the alpha-factor in the QD-laser and reveal the role of the slowly rising pumping processes in the pulse shaping and power dropouts at higher currents. The modeling is in very good agreement with the experimental observations. © 2014 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present, for the first time, a detailed investigation of the impact of second order co-propagating Raman pumping on long-haul 100G WDM DP-QPSK coherent transmission of up to 7082 km using Raman fibre laser based configurations. Signal power and noise distributions along the fibre for each pumping scheme were characterised both numerically and experimentally. Based on these pumping schemes, the Q factor penalties versus co-pump power ratios were experimentally measured and quantified. A significant Q factor penalty of up to 4.15 dB was observed after 1666 km using symmetric bidirectional pumping, compared with counter-pumping only. Our results show that whilst using co-pumping minimises the intra-cavity signal power variation and amplification noise, the Q factor penalty with co-pumping was too great for any advantage to be seen. The relative intensity noise (RIN) characteristics of the induced fibre laser and the output signal, and the intra-cavity RF spectra of the fibre laser are also presented. We attribute the Q factor degradation to RIN induced penalty due to RIN being transferred from the first order fibre laser and second order co-pump to the signal. More importantly, there were two different fibre lasing regimes contributing to the amplification. It was random distributed feedback lasing when using counter-pumping only and conventional Fabry-Perot cavity lasing when using all bidirectional pumping schemes. This also results in significantly different performances due to different laser cavity lengths for these two classes of laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operation of a single-clad Dy 3+-doped ZrF 4-BaF 2-LaF 3-AlF 3-NaF (ZBLAN) fiber laser operating at mid-infrared near 3 μm is presented. The laser is pumped by an Yb 3+-doped silica fiber laser centered at 1088 nm. An output of near 0.1 W with a slope efficiency of up to 23% with respect to absorbed pump power was measured. The laser performance, theoretical modeling and laser spectrum of Dy fiber laser system with respect to various cavity losses are studied. The experimental slope efficiency is more than 4.5 times higher than the previous demonstration, and is 64% of the Stokes efficiency limit. The efficiency was improved by using cavity mirrors of reflectivities of 99 and 50%. The emission central wavelength and spectral width are found to be dependent on the pump power and output coupler, reflectivity. © 2011 by Astro Ltd., published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally investigate three Raman fibre laser based amplification techniques with second-order bidirectional pumping. Relatively intensity noise (RIN) being transferred to the signal can be significantly suppressed by reducing first-order reflection near the input end. © 2015 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MCM-41's limited hydrothermal stability has been often related to the hydrolysis of Si-O-Si bonds due to the low degree of condensation, its thin walls or a combination of them. In this work, evidence for an additional factor is provided; a physical effect that occurs during the drying of the hydrothermally treated calcined material due to the intense capillary stress exerted in water. Depending on both physical (i.e. mechanical) and chemical (i.e. hydrolysis) resistances, the structure undergoes differently. Three MCM-41 samples with different degree of condensation were investigated. The most remarkable results are found with un-aged TEOS based material, which gets fully disordered and shrunk for all applied hydrothermal temperatures in water. Comparison between water and a low-surface-tension-solvent drying revealed that capillarity is responsible for the loss of ordering (and shrinkage) at moderate hydrothermal temperatures. The material's structure is hexagonal and shrinkage-free under the low-surface-tension-solvent route. At a high hydrothermal temperature, hydrolysis is extensive and responsible for the loss of ordering. The other remarkable finding regards the aged MCM-41 mesostructure that maintains the hexagonal features at all applied temperatures in water, and it is more stable against capillarity at high temperature. The Na-metasilicate based material is mechanically very stable and gets disordered at high temperature due to hydrolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a novel optically tunable dispersion compensator based on pumping a chirped grating made in Er/Yb co-doped fiber. The dispersion was tuned from 900 to 1900ps/nm and also from-600 to-950ps/nm in the experiment. © 2010 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The model of Reshaping and Re-amplification (2R) regenerator based on High Nonlinear Dispersion Imbalanced Loop Mirror (HN-DILM) has been designed to examine its capability to reduce the necessary of fiber loop length and input peak power by deploying High Non linear Fiber (HNLF) compared to Dispersion Shifted Fiber (DSF). The simulation results show by deployed a HNLF as a nonlinear element in Dispersion Imbalanced Loop Mirror (DILM) requires only 400mW peak powers to obtain a peak of transmission compared to DSF which requires a higher peak power at 2000mW to obtain a certain transmissivity. It also shows that HNLF required shorter fiber length to achieve the highest transmission. The 2R regenerator also increases the extinction ratio (ER) of the entire system. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact, all-room-temperature, widely tunable, continuous wave laser source in the green spectral region (502.1–544.2 nm) with a maximum output power of 14.7 mW is demonstrated. This was made possible by utilizing second-harmonic generation (SHG) in a periodically poled potassium titanyl phosphate (PPKTP) crystal waveguide pumped by a quantum-well external-cavity fiber-coupled diode laser and exploiting the multimode-matching approach in nonlinear crystal waveguides. The dual-wavelength SHG in the wavelength region between 505.4 and 537.7 nm (with a wavelength difference ranging from 1.8 to 32.3 nm) and sum-frequency generation in a PPKTP waveguide is also demonstrated.