80 resultados para approach to information systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis objective is to discover “How are informal decisions reached by screeners when filtering out undesirable job applications?” Grounded theory techniques were employed in the field to observe and analyse informal decisions at the source by screeners in three distinct empirical studies. Whilst grounded theory provided the method for case and cross-case analysis, literature from academic and non-academic sources was evaluated and integrated to strengthen this research and create a foundation for understanding informal decisions. As informal decisions in early hiring processes have been under researched, this thesis contributes to current knowledge in several ways. First, it locates the Cycle of Employment which enhances Robertson and Smith’s (1993) Selection Paradigm through the integration of stages that individuals occupy whilst seeking employment. Secondly, a general depiction of the Workflow of General Hiring Processes provides a template for practitioners to map and further develop their organisational processes. Finally, it highlights the emergence of the Locality Effect, which is a geographically driven heuristic and bias that can significantly impact recruitment and informal decisions. Although screeners make informal decisions using multiple variables, informal decisions are made in stages as evidence in the Cycle of Employment. Moreover, informal decisions can be erroneous as a result of a majority and minority influence, the weighting of information, the injection of inappropriate information and criteria, and the influence of an assessor. This thesis considers these faults and develops a basic framework of understanding informal decisions to which future research can be launched.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems. For illustration purposes, the proposed methodology is applied to linear Gaussian systems. © 2004 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies investigating the determinants of R&D investment consider pooled estimates. However, if the parameters are heterogeneous, pooled coefficients may not provide reliable estimates of individual industry effects. Hence pooled parameters may conceal valuable information that may help target government tools more efficiently across heterogeneous industries. There is little evidence to date on the decomposition of the determinants of R&D investment by industry. Moreover, the existing work does not distinguish between those R&D determinants for which pooling may be valid and those for which it is not. In this paper, we test the pooling assumption for a panel of manufacturing industries and find that pooling is valid only for output fluctuations, adjustment costs and interest rates. Implementing the test results into our model, we find government funding is significant only for low-tech R&D. Foreign R&D and skilled labour matter only in high-tech sectors. These results suggest important implications for R&D policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamical properties of the RZ-DPSK encoded sequences, focusing on the instabilities in the soliton train leading to the distortions of the information transmitted. The problem is reformulated within the framework of complex Toda chain model which allows one to carry out the simplified description of the optical soliton dynamics. We elucidate how the bit composition of the pattern affects the initial (linear) stage of the train dynamics and explain the general mechanisms of the appearance of unstable collective soliton modes. Then we discuss the nonlinear regime using asymptotic properties of the pulse stream at large propagation distances and analyze the dynamical behavior of the train classifying different scenarios for the pattern instabilities. Both approaches are based on the machinery of Hermitian and non-Hermitian lattice analysis. © 2010 IEEE.