83 resultados para Systems Simulation
Resumo:
Relay selection has been considered as an effective method to improve the performance of cooperative communication. However, the Channel State Information (CSI) used in relay selection can be outdated, yielding severe performance degradation of cooperative communication systems. In this paper, we investigate the relay selection under outdated CSI in a Decode-and-Forward (DF) cooperative system to improve its outage performance. We formulize an optimization problem, where the set of relays that forwards data is optimized to minimize the probability of outage conditioned on the outdated CSI of all the decodable relays’ links. We then propose a novel multiple-relay selection strategy based on the solution of the optimization problem. Simulation results show that the proposed relay selection strategy achieves large improvement of outage performance compared with the existing relay selection strategies combating outdated CSI given in the literature.
Resumo:
Typical Double Auction (DA) models assume that trading agents are one-way traders. With this limitation, they cannot directly reflect the fact individual traders in financial markets (the most popular application of double auction) choose their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Based on experiments under both static and dynamic settings, we find that the allocative efficiency of a static continuous BDA market comes from rational selection of trading directions and is negatively related to the intelligence of trading strategies. Moreover, we introduce Kernel trading strategy designed based on probability density estimation for general DA market. Our experiments show it outperforms some intelligent DA market trading strategies. Copyright © 2013, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
Resumo:
Vehicle-to-Grid (V2G) system with efficient Demand Response Management (DRM) is critical to solve the problem of supplying electricity by utilizing surplus electricity available at EVs. An incentivilized DRM approach is studied to reduce the system cost and maintain the system stability. EVs are motivated with dynamic pricing determined by the group-selling based auction. In the proposed approach, a number of aggregators sit on the first level auction responsible to communicate with a group of EVs. EVs as bidders consider Quality of Energy (QoE) requirements and report interests and decisions on the bidding process coordinated by the associated aggregator. Auction winners are determined based on the bidding prices and the amount of electricity sold by the EV bidders. We investigate the impact of the proposed mechanism on the system performance with maximum feedback power constraints of aggregators. The designed mechanism is proven to have essential economic properties. Simulation results indicate the proposed mechanism can reduce the system cost and offer EVs significant incentives to participate in the V2G DRM operation.
Resumo:
Retail customers provide a number of significant challenges to the efficiency and effectiveness of distribution systems. These challengers include shorter delivery windows, fluctuating volumes and a wider product mix. This paper demonstrates the use of discrete-event simulation to investigate policy issues regarding the incorporation of retail customers in a road delivery network from the spoke terminal of a hub and spoke distribution system. In particular a comparison of a mixed (retail and non-retail) delivery policy with a dedicated retail delivery run is made.
Resumo:
In this study, the authors investigate the outage-optimal relay strategy under outdated channel state information (CSI) in a decode-and-forward cooperative communication system. They first confirm mathematically that minimising the outage probability under outdated CSI is equivalent to minimising the conditional outage probability on the outdated CSI of all the decodable relays' links. They then propose a multiple-relay strategy with optimised transmitting power allocation (MRS-OTPA) that minimises the conditional outage probability. It is shown that this MRS is a generalised relay approach to achieve the outage optimality under outdated CSI. To reduce the complexity, they also propose a MRS with equal transmitting power allocation (MRS-ETPA) that achieves near-optimal outage performance. It is proved that full spatial diversity, which has been achieved under ideal CSI, can still be achieved under outdated CSI through MRS-OTPA and MRS-ETPA. Finally, the outage performance and diversity order of MRS-OTPA and MRS-ETPA are evaluated by simulation.
Resumo:
System efficiency and cost effectiveness are of critical importance for photovoltaic (PV) systems. This paper addresses the two issues by developing a novel three-port dc-dc converter for stand-alone PV systems, based on an improved Flyback-Forward topology. It provides a compact single-unit solution with a combined feature of optimized maximum power point tracking (MPPT), high step-up ratio, galvanic isolation, and multiple operating modes for domestic and aerospace applications. A theoretical analysis is conducted to analyze the operating modes followed by simulation and experimental work. This paper is focused on a comprehensive modulation strategy utilizing both PWM and phase-shifted control that satisfies the requirement of PV power systems to achieve MPPT and output voltage regulation. A 250-W converter was designed and prototyped to provide experimental verification in term of system integration and high conversion efficiency.
Resumo:
Discrete-event simulation (DES) is a developed technology used to model manufacturing and service systems. However, although the importance of modelling people in a DES has been recognised, there is little guidance on how this can be achieved in practice. The results from a literature review were used in order to identify examples of the use of DES to model people. Each article was examined in order to determine the method used to model people within the simulation study. It was found that there are no common methods but a diverse range of approaches used to model human behaviour in DES. This paper provides an outline of the approaches used to model people in terms of their decision making, availability for work, task performance and arrival rate. The outcome brings together the current knowledge in this area and will be of interest to researchers considering developing a methodology for modelling people in DES and to practitioners engaged with a simulation project involving the model ling of people’s behaviour.
Resumo:
Developing Cyber-Physical Systems requires methods and tools to support simulation and verification of hybrid (both continuous and discrete) models. The Acumen modeling and simulation language is an open source testbed for exploring the design space of what rigorousbut- practical next-generation tools can deliver to developers of Cyber- Physical Systems. Like verification tools, a design goal for Acumen is to provide rigorous results. Like simulation tools, it aims to be intuitive, practical, and scalable. However, it is far from evident whether these two goals can be achieved simultaneously. This paper explains the primary design goals for Acumen, the core challenges that must be addressed in order to achieve these goals, the “agile research method” taken by the project, the steps taken to realize these goals, the key lessons learned, and the emerging language design.