85 resultados para Servo-vision
Resumo:
PURPOSE: To examine whether objective performance of near tasks is improved with various electronic vision enhancement systems (EVES) compared with the subject's own optical magnifier. DESIGN: Experimental study, randomized, within-patient design. METHODS: This was a prospective study, conducted in a hospital ophthalmology low-vision clinic. The patient population comprised 70 sequential visually impaired subjects. The magnifying devices examined were: patient's optimum optical magnifier; magnification and field-of-view matched mouse EVES with monitor or head-mounted display (HMD) viewing; and stand EVES with monitor viewing. The tasks performed were: reading speed and acuity; time taken to track from one column of print to the next; follow a route map, and locate a specific feature; and identification of specific information from a medicine label. RESULTS: Mouse EVES with HMD viewing caused lower reading speeds than stand EVES with monitor viewing (F = 38.7, P < .001). Reading with the optical magnifier was slower than with the mouse or stand EVES with monitor viewing at smaller print sizes (P < .05). The column location task was faster with the optical magnifier than with any of the EVES (F = 10.3, P < .001). The map tracking and medicine label identification task was slower with the mouse EVES with HMD viewing than with the other magnifiers (P < .01). Previous EVES experience had no effect on task performance (P > .05), but subjects with previous optical magnifier experience were significantly slower at performing the medicine label identification task with all of the EVES (P < .05). CONCLUSIONS: Although EVES provide objective benefits to the visually impaired in reading speed and acuity, together with some specific near tasks, some can be performed just as fast using optical magnification. © 2003 by Elsevier Inc. All rights reserved.
Resumo:
In this article we present an approach to object tracking handover in a network of smart cameras, based on self-interested autonomous agents, which exchange responsibility for tracking objects in a market mechanism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to learn the vision graph, that is, the camera neighbourhood relations, during runtime, which may then be used to optimise communication between cameras. The key benefits of our completely decentralised approach are on the one hand generating the vision graph online, enabling efficient deployment in unknown scenarios and camera network topologies, and on the other hand relying only on local information, increasing the robustness of the system. Since our market-based approach does not rely on a priori topology information, the need for any multicamera calibration can be avoided. We have evaluated our approach both in a simulation study and in network of real distributed smart cameras.
Resumo:
Refraction simulators used for undergraduate training at Aston University did not realistically reflect variations in the relationship between vision and ametropia. This was because they used an algorithm, taken from the research literature, that strictly only applied to myopes or older hyperopes and did not factor in age and pupil diameter. The aim of this study was to generate new algorithms that overcame these limitations. Clinical data were collected from the healthy right eyes of 873 white subjects aged between 20 and 70 years. Vision and refractive error were recorded along with age and pupil diameter. Re-examination of 34 subjects enabled the calculation of coefficients of repeatability. The study population was slightly biased towards females and included many contact lens wearers. Sex and contact lens wear were, therefore, recorded in order to determine whether these might influence the findings. In addition, iris colour and cylinder axis orientation were recorded as these might also be influential. A novel Blur Sensitivity Ratio (BSR) was derived by dividing vision (expressed as minimum angle of resolution) by refractive error (expressed as a scalar vector, U). Alteration of the scalar vector, to account for additional vision reduction due to oblique cylinder axes, was not found to be useful. Decision tree analysis showed that sex, contact lens wear, iris colour and cylinder axis orientation did not influence the BSR. The following algorithms arose from two stepwise multiple linear regressions: BSR (myopes) = 1.13 + (0.24 x pupil diameter) + (0.14 x U) BSR (hyperopes) = (0.11 x pupil diameter) + (0.03 x age) - 0.22 These algorithms together accounted for 84% of the observed variance. They showed that pupil diameter influenced vision in both forms of ametropia. They also showed the age-related decline in the ability to accommodate in order to overcome reduced vision in hyperopia.
Resumo:
Binocular combination for first-order (luminancedefined) stimuli has been widely studied, but we know rather little about this binocular process for spatial modulations of contrast (second-order stimuli). We used phase-matching and amplitude-matching tasks to assess binocular combination of second-order phase and modulation depth simultaneously. With fixed modulation in one eye, we found that binocularly perceived phase was shifted, and perceived amplitude increased almost linearly as modulation depth in the other eye increased. At larger disparities, the phase shift was larger and the amplitude change was smaller. The degree of interocular correlation of the carriers had no influence. These results can be explained by an initial extraction of the contrast envelopes before binocular combination (consistent with the lack of dependence on carrier correlation) followed by a weighted linear summation of second-order modulations in which the weights (gains) for each eye are driven by the first-order carrier contrasts as previously found for first-order binocular combination. Perceived modulation depth fell markedly with increasing phase disparity unlike previous findings that perceived first-order contrast was almost independent of phase disparity. We present a simple revision to a widely used interocular gain-control theory that unifies first- and second-order binocular summation with a single principle-contrast-weighted summation-and we further elaborate the model for first-order combination. Conclusion: Second-order combination is controlled by first-order contrast.
Resumo:
Background - The aim was to derive equations for the relationship between unaided vision and age, pupil diameter, iris colour and sphero-cylindrical refractive error. Methods - Data were collected from 663 healthy right eyes of white subjects aged 20 to 70 years. Subjective sphero-cylindrical refractive errors ranged from -6.8 to +9.4 D (mean spherical equivalent), -1.5 to +1.9 D (orthogonal component, J0) and -0.8 to 1.0 D (oblique component, J45). Cylinder axis orientation was orthogonal in 46 per cent of the eyes and oblique in 18 per cent. Unaided vision (-0.3 to +1.3 logMAR), pupil diameter (2.3 to 7.5 mm) and iris colour (67 per cent light/blue irides) was recorded. The sample included mostly females (60 per cent) and many contact lens wearers (42 per cent) and so the influences of these parameters were also investigated. Results - Decision tree analysis showed that sex, iris colour, contact lens wear and cylinder axis orientation did not influence the relationship between unaided vision and refractive error. New equations for the dependence of the minimum angle of resolution on age and pupil diameter arose from step backwards multiple linear regressions carried out separately on the myopes (2.91.scalar vector +0.51.pupil diameter -3.14 ) and hyperopes (1.55.scalar vector + 0.06.age – 3.45 ). Conclusion - The new equations may be useful in simulators designed for teaching purposes as they accounted for 81 per cent (for myopes) and 53 per cent (for hyperopes) of the variance in measured data. In comparison, previously published equations accounted for not more than 76 per cent (for myopes) and 24 per cent (for hyperopes) of the variance depending on whether they included pupil size. The new equations are, as far as is known to the authors, the first to include age. The age-related decline in accommodation is reflected in the equation for hyperopes.
Resumo:
BACKGROUND: Since 1972, the Australian College of Optometry has worked in partnership with Vision Australia to provide multidisciplinary low-vision care at the Kooyong Low Vision Clinic. In 1999, Wolffsohn and Cochrane reported on the demographic characteristics of patients attending Kooyong. Sixteen years on, the aim of this study is to review the demographics of the Kooyong patient cohort and prescribing patterns. METHODS: Records of all new patients (n = 155) attending the Kooyong Low Vision Clinic for optometry services between April and September 2012 were retrospectively reviewed. RESULTS: Median age was 84.3 years (range 7.7 to 98.1 years) with 59 per cent female. The majority of patients presented with late-onset degenerative pathology, 49 per cent with a primary diagnosis of age-related macular degeneration. Many (47.1 per cent) lived with their families. Mean distance visual acuity was 0.57 ± 0.47 logMAR or approximately 6/24. The median spectacle-corrected near visual acuity was N8 (range N3 to worse than N80). Fifty patients (32.3 per cent) were prescribed new spectacles, 51 (32.9 per cent) low vision aids and five (8.3 per cent) were prescribed electronic magnification devices. Almost two-thirds (63.9 per cent) were referred for occupational therapy management and 12.3 per cent for orientation and mobility services. CONCLUSIONS: The profile of patients presenting for low-vision services at Kooyong is broadly similar to that identified in 1999. Outcomes appear to be similar, aside from an expected increase in electronic devices and technological solutions; however, the nature of services is changing, as treatments for ocular diseases advance and assistive technology develops and becomes more accessible. Alongside the aging population and age-related ocular disease being the predominant cause of low vision in Australia, the health-funding landscape is becoming more restrictive. The challenge for the future will be to provide timely, high-quality care in an economically efficient model.
Resumo:
Background: Age-related macular degeneration (ARMD) is a major cause of irreversible visual loss in the elderly and a significant threat to their quality of life. Although low vision services often improve the functional outcomes of individuals with macular disease, it remains unclear whether or not they have any impact on quality of life. The principal aim of this study was to determine the effect of a hospital-based low vision clinic on the quality of life of individuals with ARMD. Methods: Forty patients with ARMD attended the low vision clinic at Milton Keynes University Hospital. Quality of life was measured with the vision-specific Low Vision Quality of Life (LVQOL) questionnaire and the general health EuroQol (EQ-5D-5L) questionnaire. Measures were completed at baseline (time zero, T0), and at three- (T3) and six-month (T6) follow-up visits. Results: The near visual acuity of individuals attending the low vision clinic for the first time improved significantly between visits T0 and T3 (p=0.005), reflecting the practiced use of their newly-dispensed low vision aids. As expected, there was no significant change in near acuity over this time period for existing patients. For both new and existing patients, a significant increase in LVQOL score was evident between visits T0 and T3, with a further significant improvement between T3 and T6. Similarly, there was a significant decrease in EQ-5D-5L questionnaire scores between visits T0 and T6. Conclusions: The higher LVQOL scores obtained at the end of the study period (T6) provide evidence that low vision services at Milton Keynes University Hospital served to improve patient quality of life. The reduction in EQ-5D-5L scores over the same time period suggests that low vision services also provide for an improvement in general health-related quality of life. Impact: The findings support the cause of low vision services to improve not only the vision and functional outcomes of individuals with macular disease but also their quality of life. Moreover, the findings suggest that a more efficient allocation of resources at low vision clinics may be possible through the standardisation of patient follow-up frequency.
Resumo:
Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50–100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures.
Resumo:
Simple features such as edges are the building blocks of spatial vision, and so I ask: how arevisual features and their properties (location, blur and contrast) derived from the responses ofspatial filters in early vision; how are these elementary visual signals combined across the twoeyes; and when are they not combined? Our psychophysical evidence from blur-matchingexperiments strongly supports a model in which edges are found at the spatial peaks ofresponse of odd-symmetric receptive fields (gradient operators), and their blur B is givenby the spatial scale of the most active operator. This model can explain some surprisingaspects of blur perception: edges look sharper when they are low contrast, and when theirlength is made shorter. Our experiments on binocular fusion of blurred edges show that singlevision is maintained for disparities up to about 2.5*B, followed by diplopia or suppression ofone edge at larger disparities. Edges of opposite polarity never fuse. Fusion may be served bybinocular combination of monocular gradient operators, but that combination - involvingbinocular summation and interocular suppression - is not completely understood.In particular, linear summation (supported by psychophysical and physiological evidence)predicts that fused edges should look more blurred with increasing disparity (up to 2.5*B),but results surprisingly show that edge blur appears constant across all disparities, whetherfused or diplopic. Finally, when edges of very different blur are shown to the left and righteyes fusion may not occur, but perceived blur is not simply given by the sharper edge, nor bythe higher contrast. Instead, it is the ratio of contrast to blur that matters: the edge with theAbstracts 1237steeper gradient dominates perception. The early stages of binocular spatial vision speak thelanguage of luminance gradients.
Resumo:
Distributed representations (DR) of cortical channels are pervasive in models of spatio-temporal vision. A central idea that underpins current innovations of DR stems from the extension of 1-D phase into 2-D images. Neurophysiological evidence, however, provides tenuous support for a quadrature representation in the visual cortex, since even phase visual units are associated with broader orientation tuning than odd phase visual units (J.Neurophys.,88,455–463, 2002). We demonstrate that the application of the steering theorems to a 2-D definition of phase afforded by the Riesz Transform (IEEE Trans. Sig. Proc., 49, 3136–3144), to include a Scale Transform, allows one to smoothly interpolate across 2-D phase and pass from circularly symmetric to orientation tuned visual units, and from more narrowly tuned odd symmetric units to even ones. Steering across 2-D phase and scale can be orthogonalized via a linearizing transformation. Using the tiltafter effect as an example, we argue that effects of visual adaptation can be better explained by via an orthogonal rather than channel specific representation of visual units. This is because of the ability to explicitly account for isotropic and cross-orientation adaptation effect from the orthogonal representation from which both direct and indirect tilt after-effects can be explained.