124 resultados para Nonlinear systems
Resumo:
We analyze the steady-state propagation of optical pulses in fiber transmission systems with lumped nonlinear optical devices (NODs) placed periodically in the line. For the first time to our knowledge, a theoretical model is developed to describe the transmission regime with a quasilinear pulse evolution along the transmission line and the point action of NODs. We formulate the mapping problem for pulse propagation in a unit cell of the line and show that in the particular application to nonlinear optical loop mirrors, the steady-state pulse characteristics predicted by the theory accurately reproduce the results of direct numerical simulations.
Resumo:
A theoretical model is developed to describe the propagation of ultrashort optical pulses in fiber transmission systems in the quasilinear regime, with periodically inserted in-line nonlinear optical devices.
Resumo:
All-optical passive regeneration in 40 Gbit/s-based wavelength-division-multiplexed (WDM) dispersion-managed return-to-zero (RZ) transmission system was discussed. In-line nonlinear optical loop mirrors (NOLM) were used. A feasibility of 300 GHz-spaced two channel unlimited transmission and 150 GHz-spaced two channel 25000 km transmission over the standard fiber were found.
Resumo:
A theoretical model is developed to describe the propagation of ultra-short optical pulses in fiber transmission systems in the quasi-linear regime, with periodically inserted in-line lumped nonlinear optical devices. Stable autosoliton solutions are obtained for a particular application of the general theory.
Resumo:
We propose to apply a large predispersion (having the same sign as the transmission fiber) to an optical signal before the uncompensated fiber transmission in coherent communication systems. This technique is aimed at simplifica- tion of the following digital signal processing of nonlinear impairments. We derive a model describing pulse propagation in the dispersion-dominated nonlinear fiber channel. In the limit of very strong initial predispersion, the nonlinear propagation equations for each Fourier mode become local and decoupled. This paves the way for new techniques to manage fiber nonlinearity.
Resumo:
The noise properties of supercontinuum generation continue to be a subject of wide interest within both pure and applied physics. Aside from immediate applications in supercontinuum source development, detailed studies of supercontinuum noise mechanisms have attracted interdisciplinary attention because of links with extreme instabilities in other physical systems, especially the infamous and destructive oceanic rogue waves. But the instabilities inherent in supercontinuum generation can also be interpreted in terms of natural links with the general field of random processes, and this raises new possibilities for applications in areas such as random number generation. In this contribution we will describe recent work where we interpret supercontinuum intensity and phase fluctuations in this way.
Resumo:
Internally heated fluids are found across the nuclear fuel cycle. In certain situations the motion of the fluid is driven by the decay heat (i.e. corium melt pools in severe accidents, the shutdown of liquid metal reactors, molten salt and the passive control of light water reactors) as well as normal operation (i.e. intermediate waste storage and generation IV reactor designs). This can in the long-term affect reactor vessel integrity or lead to localized hot spots and accumulation of solid wastes that may prompt local increases in activity. Two approaches to the modeling of internally heated convection are presented here. These are based on numerical analysis using codes developed in-house and simulations using widely available computational fluid dynamics solvers. Open and closed fluid layers at around the transition between conduction and convection of various aspect ratios are considered. We determine optimum domain aspect ratio (1:7:7 up to 1:24:24 for open systems and 5:5:1, 1:10:10 and 1:20:20 for closed systems), mesh resolutions and turbulence models required to accurately and efficiently capture the convection structures that evolve when perturbing the conductive state of the fluid layer. Note that the open and closed fluid layers we study here are bounded by a conducting surface over an insulating surface. Conclusions will be drawn on the influence of the periodic boundary conditions on the flow patterns observed. We have also examined the stability of the nonlinear solutions that we found with the aim of identifying the bifurcation sequence of these solutions en route to turbulence.
Resumo:
Multiwavelength fiber laser is a perfect light source for future wavelength-division-multiplexing optical communication systems. A multiwavelength fiber laser based on nonlinear polarization rotation with up to 18 wavelengths has been proposed and demonstrated. The intensity- and wavelength-dependent loss induced by nonlinear polarization rotation effect is used to alleviate the mode competition in the homogeneous broadening gain medium of erbium-doped fiber. Instead of traditional filters, a polarization-maintaining fiber is inserted into the laser cavity, with which the polarization-dependent isolator composes an equivalent Lyot birefringent fiber filter. The in-line birefringence fiber filter is used to simplify the laser configuration, which benefits systematic integration. The effect of the 980 nm pump power on the multiwavelength generation is investigated. It is shown that the pump power contributes a lot to the evenness of the multiwavelength spectra due to the intensity dependence of nonlinear polarization rotation effect.
Resumo:
We investigate a simplified model of two fully connected magnetic systems maintained at different temperatures by virtue of being connected to two independent thermal baths while simultaneously being interconnected with each other. Using generating functional analysis, commonly used in statistical mechanics, we find exactly soluble expressions for their individual magnetization that define a two-dimensional nonlinear map, the equations of which have the same form as those obtained for densely connected equilibrium systems. Steady states correspond to the fixed points of this map, separating the parameter space into a rich set of nonequilibrium phases that we analyze in asymptotically high and low (nonequilibrium) temperature limits. The theoretical formalism is shown to revert to the classical nonequilibrium steady state problem for two interacting systems with a nonzero heat transfer between them that catalyzes a phase transition between ambient nonequilibrium states. © 2013 American Physical Society.
Resumo:
We develop an analytical theory which allows us to identify the information spectral density limits of multimode optical fiber transmission systems. Our approach takes into account the Kerr-effect induced interactions of the propagating spatial modes and derives closed-form expressions for the spectral density of the corresponding nonlinear distortion. Experimental characterization results have confirmed the accuracy of the proposed models. Application of our theory in different FMF transmission scenarios has predicted a ~10% variation in total system throughput due to changes associated with inter-mode nonlinear interactions, in agreement with an observed 3dB increase in nonlinear noise power spectral density for a graded index four LP mode fiber. © 2013 Optical Society of America.
Resumo:
A theoretical model is developed to describe the propagation of ultrashort optical pulses in fiber transmission systems in the quasilinear regime, with periodically inserted in-line nonlinear optical devices. © 2005 The American Physical Society.