88 resultados para Nanostructured drug delivery systems
Resumo:
Poly(e-caprolactone) (PCL) is biocompatible, non-immunogenic and non-toxic, and slowly degrades, allowing sufficient time for tissue regeneration. PCL has the potential for application in bone and cartilage repair as it may provide the essential structure required for bone regeneration, however, an ideal scaffold system is still undeveloped. PCL fibres were prepared using the gravity spinning technique, in which collagen was either incorporated into or coated onto the 'as-spun' fibres, in order to develop novel biodegradable polymer fibres which will effectively deliver collagen and support the attachment and proliferation of human osteoblast (HOB) cells for bone regeneration. The physical and mechanical characteristics and cell fibre interactions were analysed. The PCL fibres were found to be highly flexible and inclusion of collagen did not alter the mechanical properties of PCL fibres. Overall, HOB cells were shown to effectively adhere and proliferate on all fibre platforms tested, although proliferation rates were enhanced by surface coating PCL fibres with collagen compared to PCL fibres incorporating collagen and PCL-only fibres. These findings highlight the potential of using gravity spun PCL fibres as a delivery platform for extracellular matrix proteins, such as collagen, in order to enhance cell adherence and proliferation for tissue repair.
Resumo:
Introduction: Adjuvants potentiate immune responses, reducing the amount and dosing frequency of antigen required for inducing protective immunity. Adjuvants are of special importance when considering subunit, epitope-based or more unusual vaccine formulations lacking significant innate immunogenicity. While numerous adjuvants are known, only a few are licensed for human use; principally alum, and squalene-based oil-in-water adjuvants. Alum, the most commonly used, is suboptimal. There are many varieties of adjuvant: proteins, oligonucleotides, drug-like small molecules and liposome-based delivery systems with intrinsic adjuvant activity being perhaps the most prominent. Areas covered: This article focuses on small molecules acting as adjuvants, with the author reviewing their current status while highlighting their potential for systematic discovery and rational optimisation. Known small molecule adjuvants (SMAs) can be synthetically complex natural products, small oligonucleotides or drug-like synthetic molecules. The author provides examples of each class, discussing adjuvant mechanisms relevant to SMAs, and exploring the high-throughput discovery of SMAs. Expert opinion: SMAs, particularly synthetic drug-like adjuvants, are amenable to the plethora of drug-discovery techniques able to optimise the properties of biologically active small molecules. These range from laborious synthetic modifications to modern, rational, effort-efficient computational approaches, such as QSAR and structure-based drug design. In principal, any property or characteristic can thus be designed in or out of compounds, allowing us to tailor SMAs to specific biological functions, such as targeting specific cells or pathways, in turn affording the power to tailor SMAs to better address different diseases.
Resumo:
Magnetic polymer nanofibres intended for drug delivery have been designed and fabricated by electrospinning. Magnetite (Fe3O4) nanoparticles were successfully incorporated into electrospun nanofibre composites of two cellulose derivatives, dehydroxypropyl methyl cellulose phthalate (HPMCP) and cellulose acetate (CA), while indomethacin (IDN) and aspirin have been used as model drugs. The morphology of the neat and magnetic drug-loaded electrospun fibres and the release characteristics of the drugs in artificial intestinal juice were investigated. It was found that both types of electrospun composite nanofibres containing magnetite nanoparticles showed superparamagnetism at room temperature, and their saturation magnetisation and morphology depend on the Fe3O4 nanoparticle content. Furthermore, the presence of the magnetite nanoparticles did not affect the drug release profiles of the nanofibrous devices. The feasibility of controlled drug release to a target area of treatment under the guidance of an external magnetic field has also been demonstrated, showing the viability of the concept of magnetic drug-loaded polymeric composite nanofibres for magneto-chemotherapy.
Resumo:
Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6′-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.
Resumo:
Vaccines remain a key tool in the defence against major diseases. However, in the development of vaccines a trade off between safety and efficacy is required with newer vaccines, based on sub-unit proteins and peptides, displaying improved safety profiles yet suffering from low efficacy. Adjuvants can be employed to improve their potency, but currently there are only a limited number of adjuvant systems licensed for clinical use. Of the new adjuvants being investigated, particulate systems offer several advantages including: passive targeting to the antigen-presenting cells within the immune system, protection against adjuvant degradation, and ability for sustained antigen release. There has been a range of particulate vaccine delivery systems outlined in recent patents including polymer-based microspheres (which are generally more focused on the use of synthetic polymers, in particular the polyesters) and surfactant-based vesicles. Within these formulations, several patented systems are exploiting the use of cationic lipids which, despite their limitations in gene therapy, clearly offer strong potential as adjuvants. Within this review, the current range of particulate system technologies being investigated as potential adjuvants are discussed with regard to both their respective advantages and the potential hurdles which must be overcome for such systems to be converted into successful pharmaceutical products.
Resumo:
Hypercoiling polymers can be suited for application to living systems because they are similar in structure to the protein-based lipid assemblies found at fluid interfaces within the body. This leads to a range of exciting possibilities, not only in membrane transport applications but also in biosensors, drug delivery and mechanistic studies of biological membrane function. This study is focused in the study of the stability and suitability of nanostructures made of a hypercoiling polymer for drug delivery applications. The polymer poly (styrene-maleic acid) (PSMA) was combined with the phospholipid dimyristoylphosphatidylcholine (DMPC) to form amphiphilic nanostructures. The stability and suitability of these polymer-phospholipid nanocarriers for hydrophobic and hydrophilic molecules load and release was analyzed by several techniques. It was found that several of the studied molecules had a substantial effect on the surface charge and stability of the nanocarrier. It was also demonstrated that two types of nanocarriers, chemically modified and unmodified, were able to control the release of the molecules, especially in the case of hydrophobic compounds. In addition, as the hydrophobicity increased the release slowed down. These clear nanocarriers have the potential to behave very favorably at interfaces such as the tear lipid film were transparency is a requirement, giving a new way of controlled drug release in the eye.
Resumo:
Recent developments within the National Health Service have led to an increase in personnel 'qualified' to prescribe a wide range of pharmacological agents. A short (38-day) Continuing Professional Development course in prescribing is deemed adequate to fully train individuals for practice. A sound understanding of prescribing medicines has important implications for patient benefit. For example, a prescriber would require some knowledge of drug absorption, distribution, metabolism and excretion, as well as aspects of drug delivery and drug-drug interactions. Drug metabolism in particular exerts a powerful influence on drug action; this can range from complete failure of efficacy through to life-threatening toxicity. Moreover, it is conservatively estimated that there may be several thousand deaths each year in the UK arising from an inadequate knowledge of drug metabolism when prescribing medicines. This one-day course focused on the importance of understanding drug metabolism on treatment strategies and outcomes, and was accessed by a range of healthcare professionals in the West Midlands area of the UK. © 2007 Informa UK Ltd.
Resumo:
We report results of an experimental study, complemented by detailed statistical analysis of the experimental data, on the development of a more effective control method of drug delivery using a pH sensitive acrylic polymer. New copolymers based on acrylic acid and fatty acid are constructed from dodecyl castor oil and a tercopolymer based on methyl methacrylate, acrylic acid and acryl amide were prepared using this new approach. Water swelling characteristics of fatty acid, acrylic acid copolymer and tercopolymer respectively in acid and alkali solutions have been studied by a step-change method. The antibiotic drug cephalosporin and paracetamol have also been incorporated into the polymer blend through dissolution with the release of the antibiotic drug being evaluated in bacterial stain media and buffer solution. Our results show that the rate of release of paracetamol getss affected by the pH factor and also by the nature of polymer blend. Our experimental data have later been statistically analyzed to quantify the precise nature of polymer decay rates on the pH density of the relevant polymer solvents. The time evolution of the polymer decay rates indicate a marked transition from a linear to a strictly non-linear regime depending on the whether the chosen sample is a general copolymer (linear) or a tercopolymer (non-linear). Non-linear data extrapolation techniques have been used to make probabilistic predictions about the variation in weight percentages of retained polymers at all future times, thereby quantifying the degree of efficacy of the new method of drug delivery.
Resumo:
With an ageing population and increasing prevalence of central-nervous system (CNS) disorders new approaches are required to sustain the development and successful delivery of therapeutics into the brain and CNS. CNS drug delivery is challenging due to the impermeable nature of the brain microvascular endothelial cells that form the blood-brain barrier (BBB) and which prevent the entry of a wide range of therapeutics into the brain. This review examines the role intranasal delivery may play in achieving direct brain delivery, for small molecular weight drugs, macromolecular therapeutics and cell-based therapeutics, by exploitation of the olfactory and trigeminal nerve pathways. This approach is thought to deliver drugs into the brain and CNS through bypassing the BBB. Details of the mechanism of transfer of administrated therapeutics, the pathways that lead to brain deposition, with a specific focus on therapeutic pharmacokinetics, and examples of successful CNS delivery will be explored. © 2014 Bentham Science Publishers.
Resumo:
Purpose: The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery. Methods: Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers (L-arginine and L-leucine) (0.5-1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. Results: Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79±3.24), fine particle dose (FPD) (14.42±1.57 μg), with a mass median aerodynamic diameter (MMAD) 2.86±0.24 μm. However, L-leucine was significantly superior in enhancing the aerosolization performance ( L-arginine:%FPF 27.61±4.49-26.57±1.85; FPD 12.40±0.99-19.54±0.16 μg and MMAD 2.18±0.35-2. 98±0.25 μm, L-leucine:%FPF 36.90±3.6-43.38±5. 6; FPD 18.66±2.90-21.58±2.46 μg and MMAD 2.55±0.03-3. 68±0.12 μm). Incorporating L-leucine (1.5%w/w) reduced the burst release (24.04±3.87%) of SF compared to unmodified formulations (41.87±2.46%), with both undergoing a square root of time (Higuchi's pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with L-leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o-cell lines, resulted in cell viability of 85.57±5.44 and 60.66±6.75%, respectively, after 72 h treatment. Conclusion:The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery. © Springer Science+Business Media, LLC 2011.
Resumo:
Liposomes not only offer the ability to enhance drug delivery, but can effectively act as vaccine delivery systems and adjuvants. Their flexibility in size, charge, bilayer rigidity and composition allow for targeted antigen delivery via a range of administration routes. In the development of liposomal adjuvants, the type of immune response promoted has been linked to their physico-chemical characteristics, with the size and charge of the liposomal particles impacting on liposome biodistribution, exposure in the lymph nodes and recruitment of the innate immune system. The addition of immunostimulatory agents can further potentiate their immunogenic properties. Here, we outline the attributes that should be considered in the design and manufacture of liposomal adjuvants for the delivery of sub-unit and nucleic acid based vaccines.
Resumo:
Clinical translation of BCRP inhibitors have failed due to neurotoxicity and novel approaches are required to identify suitable modulators of BCRP to enhance CNS drug delivery. In this study we examine 18 compounds, primarily phytochemicals, as potential novel modulators of AhR-mediated regulation of BCRP expression and function in immortalised and primary porcine brain microvascular endothelial cells as a mechanism to enhance CNS drug delivery. The majority of modulators possessed a cellular viability IC50 > 100 µM in both cell systems. BCRP activity, when exposed to modulators for 1 hour, was diminished for most modulators through significant increases in H33342 accumulation at < 10 µM with 2,6,4-trimethoflavone increasing H33342 intracellular accumulation by 3.7–6.6 fold over 1–100 µM. Western blotting and qPCR identified two inducers of BCRP (quercetin and naringin) and two down-regulators (17-β-estradiol and curcumin) with associated changes in BCRP efflux transport function further confirmed in both cell lines. siRNA downregulation of AhR resulted in a 1.75 ± 0.08 fold change in BCRP expression, confirming the role of AhR in the regulation of BCRP. These findings establish the regulatory role AhR of in controlling BCRP expression at the BBB and confirm quercetin, naringin, 17-β-estradiol, and curcumin as novel inducers and down-regulators of BCRP gene, protein expression and functional transporter activity and hence potential novel target sites and candidates for enhancing CNS drug delivery.
Resumo:
Despite the substantial body of research investigating the use of liposomes, niosomes and other bilayer vesicles for drug delivery, the translation of these systems into licensed products remains limited. Indeed, recent shortages in the supply of liposomal products demonstrate the need for new scalable production methods for liposomes. Therefore, the aim of our research has been to consider the application of microfluidics in the manufacture of liposomes containing either or both a water soluble and a lipid soluble drug to promote co-delivery of drugs. For the first time, we demonstrate the entrapment of a hydrophilic and a lipophilic drug (metformin and glipizide respectively) both individually, and in combination, using a scalable microfluidics manufacturing system. In terms of the operating parameters, the choice of solvents, lipid concentration and aqueous:solvent ratio all impact on liposome size with vesicle diameter ranging from ∼90 to 300 nm. In terms of drug loading, microfluidics production promoted high loading within ∼100 nm vesicles for both the water soluble drug (20–25% of initial amount added) and the bilayer embedded drug (40–42% of initial amount added) with co-loading of the drugs making no impact on entrapment efficacy. However, co-loading of glipizide and metformin within the same liposome formulation did impact on the drug release profiles; in both instances the presence of both drugs in the one formulation promoted faster (up to 2 fold) release compared to liposomes containing a single drug alone. Overall, these results demonstrate the application of microfluidics to prepare liposomal systems incorporating either or both an aqueous soluble drug and a bilayer loaded drug.