76 resultados para Multi layer perceptron backpropagation neural network
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Aston University Research Archive (76)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (22)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (28)
- CentAUR: Central Archive University of Reading - UK (102)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (10)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (17)
- Digital Peer Publishing (5)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (11)
- Duke University (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (15)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (9)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositorio de la Universidad del Pacífico - PERU (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (158)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- Scielo Saúde Pública - SP (25)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (34)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (3)
- Universidade Federal de Uberlândia (2)
- Universidade Federal do Pará (12)
- Universidade Federal do Rio Grande do Norte (UFRN) (22)
- Universitat de Girona, Spain (6)
- Université de Lausanne, Switzerland (15)
- Université de Montréal (1)
- Université de Montréal, Canada (9)
- University of Michigan (1)
- University of Queensland eSpace - Australia (49)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
The automated sensing scheme described in this paper has the potential to automatically capture, discriminate and classify transients in gait. The mechanical simplicity of the walking platform offers advantages over standard force plates. There is less restriction on dimensions offering the opportunity for multi-contact and multiple steps. This addresses the challenge of patient targeting and the evaluation of patients in a variety of ambulatory applications. In this work the sensitivity of the distributive tactile sensing method has been investigated experimentally. Using coupled time series data from a small number of sensors, gait patterns are compared with stored templates using a pattern recognition algorithm. By using a neural network these patterns were interpreted classifying normal and affected walking events with an accuracy of just under 90%. This system has potential in gait analysis and rehabilitation as a tool for early diagnosis in walking disorders, for determining response to therapy and for identifying changes between pre and post operative gait. Copyright © 2009 by ASME.