167 resultados para All-optical signal processing
Resumo:
An all-optical regenerative memory device using a single loop mirror and a semiconductor optical amplifier is experimentally demonstrated. This configuration has potential for a low power all-optical stable memory device with non-inverting characteristics where packets are stored by continuously injecting the regenerated data back into the loop.
Resumo:
Multiwavelength all-optical regeneration has the potential to substantially increase both the capacity and scalability of future optical networks. In this paper, we review recent promising developments in this area. First, we recall the basic principles of multichannel regeneration of high bit rate signals in optical communication systems before discussing the current technological approaches. We then describe in detail two fiber-based multichannel 2R regeneration techniques for return-to-zero-on-off keying based on 1) dispersion managed systems and 2) direction and polarization multiplexing. We present results illustrating the levels of performance so far achieved and discuss various practical issues and prospects for further performance enhancement.
Resumo:
We demonstrate a simple technique for the implementation of an all-optical integrator based on a uniform-period fiber Bragg grating (FBG) in reflection that is designed to present a decreasing exponential impulse response. The proposed FBG integrator is readily feasible and can perform close to ideal integration of few-picosecond and subpicosecond pulses.
Resumo:
Fibre-optic communications systems have traditionally carried data using binary (on-off) encoding of the light amplitude. However, next-generation systems will use both the amplitude and phase of the optical carrier to achieve higher spectral efficiencies and thus higher overall data capacities(1,2). Although this approach requires highly complex transmitters and receivers, the increased capacity and many further practical benefits that accrue from a full knowledge of the amplitude and phase of the optical field(3) more than outweigh this additional hardware complexity and can greatly simplify optical network design. However, use of the complex optical field gives rise to a new dominant limitation to system performance-nonlinear phase noise(4,5). Developing a device to remove this noise is therefore of great technical importance. Here, we report the development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals.
Resumo:
We review recent advances in all-optical OFDM technologies and discuss the performance of a field trial of a 2 Tbit/s Coherent WDM over 124 km with distributed Raman amplification. The results indicate that careful optimisation of the Raman pumps is essential. We also consider how all-optical OFDM systems perform favourably against energy consumption when compared with alternative coherent detection schemes. We argue that, in an energy constrained high-capacity transmission system, direct detected all-optical OFDM with `ideal' Raman amplification is an attractive candidate for metro area datacentre interconnects with ~100 km fibre spans, with an overall energy requirement at least three times lower than coherent detection techniques.
Resumo:
We demonstrate that the use of in-line nonlinear optical loop mirrors (NOLMs) in dispersion-managed (DM) transmission systems dominated by amplitude noise can achieve passive 2R regeneration of a 40 and 80 Gbit/s RZ data stream. This is an indication that the use of this approach could obviate the need for full-regeneration in high data rate, strong DM systems, when intra-channel four-wave mixing poses serious problems.
Resumo:
We present a concept for all-optical regeneration of signals modulated in phase-sensitive modulation formats, which is based on a new design of Raman amplified nonlinear optical loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase-noise reduction in high-speed differential phase-shift-keying transmission systems by use of the RA-NOLM combined with spectral filtering.
Resumo:
In this letter, we numerically demonstrate that the use of inline nonlinear optical loop mirrors in strongly dispersion-managed transmission systems dominated by pulse distortion and amplitude noise can achieve all-optical passive 2R regeneration of a 40-Gb/s return-to-zero data stream. We define the tolerance limits of this result to the parameters of the input pulses.
Resumo:
This work numerically analyzes the performances of a 2R (reamplification and reshaping) regenerator based on a nonlinear optical loop mirror and a 3R (reamplification, reshaping, and retiming) regenerator using a nonlinearly enhanced amplitude modulator in 40-Gb/s standard single-mode fiber (SMF)-based optical networks with large amplifier spacing. The characteristics of one(600 km of SMF) and two-step regeneration are examined and the feasibility of wavelength-division multiplexing (WDM) operation is demonstrated.
Resumo:
We propose a 2R regeneration scheme based on a nonlinear optical loop mirror and optical filtering. The feasibility of wavelength-division multiplexing operation at 40 Gbit/s is numerically demonstrated. We examine the characteristics of one-step regeneration and discuss networking applications.
Resumo:
We propose an all-optical passive 2R regeneration method for WDM (N×40 Gbit/s) dispersion-managed RZ transmission based on specially designed WDM guiding filters and in-line nonlinear optical loop mirrors. By system optimisation, the feasibility of 150 GHz-spaced × l6 channel transmission over 25,000 km of standard fibre is numerically demonstrated.
Resumo:
A method of all-optical passive quasi-regeneration in transoceanic 40 Gbit/s return-to-zero transmission systems with strong dispersion management was described. The use of in-line nonlinear optical loop mirrors (NOLM) by the method was demonstrated. The quasi-regeneration of signals performed by NOLMs was found to improve the systems's performance.
Resumo:
It is numerically demonstrated, for the first time, that dispersion management and in-line nonlinear optical loop mirrors can achieve all-optical passive regeneration and distance-unlimited transmission of a soliton data stream at 40 Gbit/s over standard fibre.
Resumo:
We introduce a novel transmission technique of periodic in-line all-optical format conversion between return-to-zero and non-return-to-zero-like aimed at delaying the accumulation of format-specific impairments. A particular realization of this approach using in-line normal dispersion fibre-enhanced nonlinear optical loop mirrors at 40Gbit/s data rate is presented.