83 resultados para Accommodation
Resumo:
PURPOSE. To compare the magnitude and time course of nearwork-induced transient myopia (NITM) in preadolescent Hong Kong Chinese myopes and emmetropes. METHOD. Forty-five Hong Kong Chinese children, 35 myopes and 10 emmetropes aged 6 to 12 years (median, 7.5), monocularly viewed a letter target through a Badal lens for 5 minutes at either 5.00- or 2.50-D accommodative demand, followed by 3 minutes of viewing the equivalent target at optical infinity. Accommodative responses were measured continuously with a modified, infrared, objective open-field autorefractor. Accommodative responses were also measured for a countercondition: viewing of a letter target for 5 minutes at optical infinity, followed by 3 minutes of viewing the target at a 5.00-D accommodative demand. The results were compared with tonic accommodation and both subject and family history of refractive error. RESULTS. Retinal-blur-driven NITM was significantly greater in Hong Kong Chinese children with myopic vision than in the emmetropes after both near tasks, but showed no significant dose effect. The NITM was still evident 3 minutes after viewing the 5.00-D near task for 5 minutes. The magnitude of NITM correlated with the accommodative drift after viewing a distant target for more than 4 minutes, but was unrelated to the subjects' or family history of refractive error. CONCLUSIONS. In a preadolescent ethnic population with known predisposition to myopia, there is a significant posttask blur-driven accommodative NITM, which is sustained for longer than has previously been found in white adults.
Resumo:
The primary aim of this thesis was to investigate the in vivo ocular morphological and contractile changes occurring within the accommodative apparatus prior to the onset of presbyopia, with particular reference to ciliary muscle changes with age and the origin of a myopic shift in refraction during incipient presbyopia. Commissioned semi-automated software proved capable of extracting accurate and repeatable measurements from crystalline lens and ciliary muscle Anterior Segment Optical Coherence Tomography (AS-OCT) images and reduced the subjectivity of AS-OCT image analysis. AS-OCT was utilised to document longitudinal changes in ciliary muscle morphology within an incipient presbyopic population (n=51). A significant antero-inwards shift of ciliary muscle mass was observed after 2.5 years. Furthermore, in a subgroup study (n=20), an accommodative antero-inwards movement of ciliary muscle mass was evident. After 2.5 years, the centripetal response of the ciliary muscle significantly attenuated during accommodation, whereas the antero-posterior mobility of the ciliary muscle remained invariant. Additionally, longitudinal measurement of ocular biometry revealed a significant increase in crystalline lens thickness and a corresponding decrease in anterior chamber depth after 2.5 years (n=51). Lenticular changes appear to be determinant of changes in refraction during incipient presbyopia. During accommodation, a significant increase in crystalline lens thickness and axial length was observed, whereas anterior chamber depth decreased (n=20). The change in ocular biometry per dioptre of accommodation exerted remained invariant after 2.5 years. Cross-sectional ocular biometric data were collected to quantify accommodative axial length changes from early adulthood to advanced presbyopia (n=72). Accommodative axial length elongation significantly attenuated during presbyopia, which was consistent with a significant increase in ocular rigidity during presbyopia. The studies presented in this thesis support the Helmholtz theory of accommodation and despite the reduction in centripetal ciliary muscle contractile response with age, primarily implicate lenticular changes in the development of presbyopia.
Resumo:
Background - The aim was to derive equations for the relationship between unaided vision and age, pupil diameter, iris colour and sphero-cylindrical refractive error. Methods - Data were collected from 663 healthy right eyes of white subjects aged 20 to 70 years. Subjective sphero-cylindrical refractive errors ranged from -6.8 to +9.4 D (mean spherical equivalent), -1.5 to +1.9 D (orthogonal component, J0) and -0.8 to 1.0 D (oblique component, J45). Cylinder axis orientation was orthogonal in 46 per cent of the eyes and oblique in 18 per cent. Unaided vision (-0.3 to +1.3 logMAR), pupil diameter (2.3 to 7.5 mm) and iris colour (67 per cent light/blue irides) was recorded. The sample included mostly females (60 per cent) and many contact lens wearers (42 per cent) and so the influences of these parameters were also investigated. Results - Decision tree analysis showed that sex, iris colour, contact lens wear and cylinder axis orientation did not influence the relationship between unaided vision and refractive error. New equations for the dependence of the minimum angle of resolution on age and pupil diameter arose from step backwards multiple linear regressions carried out separately on the myopes (2.91.scalar vector +0.51.pupil diameter -3.14 ) and hyperopes (1.55.scalar vector + 0.06.age – 3.45 ). Conclusion - The new equations may be useful in simulators designed for teaching purposes as they accounted for 81 per cent (for myopes) and 53 per cent (for hyperopes) of the variance in measured data. In comparison, previously published equations accounted for not more than 76 per cent (for myopes) and 24 per cent (for hyperopes) of the variance depending on whether they included pupil size. The new equations are, as far as is known to the authors, the first to include age. The age-related decline in accommodation is reflected in the equation for hyperopes.
Resumo:
Purpose: To investigate the relationship between pupil diameter and refractive error and how refractive correction, target luminance, and accommodation modulate this relationship. Methods: Sixty emmetropic, myopic, and hyperopic subjects (age range, 18 to 35 years) viewed an illuminated target (luminance: 10, 100, 200, 400, 1000, 2000, and 4100 cd/m2) within a Badal optical system, at 0 diopters (D) and −3 D vergence, with and without refractive correction. Refractive error was corrected using daily disposable contact lenses. Pupil diameter and accommodation were recorded continuously using a commercially available photorefractor. Results: No significant difference in pupil diameter was found between the refractive groups at 0 D or −3 D target vergence, in the corrected or uncorrected conditions. As expected, pupil diameter decreased with increasing luminance. Target vergence had no significant influence on pupil diameter. In the corrected condition, at 0 D target vergence, the accommodation response was similar in all refractive groups. At −3 D target vergence, the emmetropic and myopic groups accommodated significantly more than the hyperopic group at all luminance levels. There was no correlation between accommodation response and pupil diameter or refractive error in any refractive group. In the uncorrected condition, the accommodation response was significantly greater in the hyperopic group than in the myopic group at all luminance levels, particularly for near viewing. In the hyperopic group, the accommodation response was significantly correlated with refractive error but not pupil diameter. In the myopic group, accommodation response level was not correlated with refractive error or pupil diameter. Conclusions: Refractive error has no influence on pupil diameter, irrespective of refractive correction or accommodative demand. This suggests that the pupil is controlled by the pupillary light reflex and is not driven by retinal blur.
Resumo:
Premium Intraocular Lenses (IOLs) such as toric IOLs, multifocal IOLs (MIOLs) and accommodating IOLs (AIOLs) can provide better refractive and visual outcomes compared to standard monofocal designs, leading to greater levels of post-operative spectacle independence. The principal theme of this thesis relates to the development of new assessment techniques that can help to improve future premium IOL design. IOLs designed to correct astigmatism form the focus of the first part of the thesis. A novel toric IOL design was devised to decrease the effect of toric rotation on patient visual acuity, but found to have neither a beneficial or detrimental impact on visual acuity retention. IOL tilt, like rotation, may curtail visual performance; however current IOL tilt measurement techniques require the use of specialist equipment not readily available in most ophthalmological clinics. Thus a new idea that applied Pythagoras’s theory to digital images of IOL optic symmetricality in order to calculate tilt was proposed, and shown to be both accurate and highly repeatable. A literature review revealed little information on the relationship between IOL tilt, decentration and rotation and so this was examined. A poor correlation between these factors was found, indicating they occur independently of each other. Next, presbyopia correcting IOLs were investigated. The light distribution of different MIOLs and an AIOL was assessed using perimetry, to establish whether this could be used to inform optimal IOL design. Anticipated differences in threshold sensitivity between IOLs were not however found, thus perimetry was concluded to be ineffective in mapping retinal projection of blur. The observed difference between subjective and objective measures of accommodation, arising from the influence of pseudoaccommodative factors, was explored next to establish how much additional objective power would be required to restore the eye’s focus with AIOLs. Blur tolerance was found to be the key contributor to the ocular depth of focus, with an approximate dioptric influence of 0.60D. Our understanding of MIOLs may be limited by the need for subjective defocus curves, which are lengthy and do not permit important additional measures to be undertaken. The use of aberrometry to provide faster objective defocus curves was examined. Although subjective and objective measures related well, the peaks of the MIOL defocus curve profile were not evident with objective prediction of acuity, indicating a need for further refinement of visual quality metrics based on ocular aberrations. The experiments detailed in the thesis evaluate methods to improve visual performance with toric IOLs. They also investigate new techniques to allow more rapid post-operative assessment of premium IOLs, which could allow greater insights to be obtained into several aspects of visual quality, in order to optimise future IOL design and ultimately enhance patient satisfaction.
Resumo:
PURPOSE: To profile accommodative biometric changes longitudinally and to determine the influence of age-related ocular structural changes on the accommodative response prior to the onset of presbyopia. METHODS: Twenty participants (aged 34-41 years) were reviewed at six-monthly intervals over two and a half years. At each visit, ocular biometry was measured with the LenStar biometer (www.Haag-Streit.com) in response to 0.00, 3.00 and 4.50 D stimuli. Accommodative responses were measured by the WAM 5500 Auto Ref/Keratometer (www.grandseiko.com). RESULTS: During accommodation, anterior chamber depth reduced (F = 29, p < 0.001), whereas crystalline lens thickness (F = 39, p < 0.001) and axial length (F = 5.4, p = 0.009) increased. The accommodative response (F = 5.5, p = 0.001) and the change in anterior chamber depth (F = 3.1, p = 0.039), crystalline lens thickness (F = 3.0, p = 0.042) and axial length (F = 2.5, p = 0.038) in response to the 4.50 D accommodative target reduced after 2.5 years. However, the change in anterior chamber depth (F = 2.2, p = 0.097), crystalline lens thickness (F = 1.7, p = 0.18) and axial length (F = 1.0, p = 0.40) per dioptre of accommodation exerted remained invariant after 2.5 years. The increase in disaccommodated crystalline lens thickness with age was not significantly associated with the reduction in accommodative response (R = 0.32, p = 0.17). CONCLUSION: Despite significant age-related structural changes in disaccommodated biometry, the change in biometry per dioptre of accommodation exerted remained invariant with age. The present study supports the Helmholtz theory of accommodation and suggests an increase in lenticular stiffness is primarily responsible for the onset of presbyopia.
Resumo:
Purpose: The Shin-Nippon SRW-5000 is an open view autorefractor that superseded the Canon R-1 autorefractor in the mid-1990s and has been used widely in optometry and vision science laboratories. It has been used to measure refractive error, accommodation responses both statically and dynamically, off-axis refractive error, and adapted to measure pupil size. This paper presents an overview of the original 2001 clinical evaluation of the SRW-5000 in adults (Mallen et al., Ophthal Physiol Opt 2001; 21: 101) and provides an update on the use and modification of the instrument since the original publication. Recent findings: The SRW-5000 instrument, and the family of devices which followed, have shown excellent validity, repeatability, and utility in clinical and research settings. The instruments have also shown great potential for increased research functionality following a number of modifications. Summary: The SRW-5000 and its derivatives have been, and continue to be, of significant importance in our drive to understand myopia progression, myopia control techniques, and oculomotor function in human vision.
Resumo:
Purpose: We have reported that the changes in the accommodative response to electrical stimulation of the branches of the ciliary nerves in cats. (Miyagawa et al, PLoS One, 2014). We have also reported that no robust accommodative responses to the electrical stimulations of the sclera of peripheral cornea (SSPC) were observed in enucleated porcine eyes (Mihashi et al, VPOptics, 2014). In this study, accommodative responses to SSPC stimulation in cats and porcines were investigated. Methods: Two eyes of two cats under anesthesia and after they were sacrificed were studied. Three enucleated porcine eyes obtained from a local slaughterhouse were also studied. Trains of biphasic pulses (current, 3 mA; duration, 2 ms/phase; frequency, 40 Hz) were applied using a tungsten electrode (0.3mm diameter) from several orientations. Wavefront sensing with a compact wavefront aberrometer (Uday et al J Cataract Refract Surg, 2013) were performed before and 4 s (cat) and 10 s (pig) after the stimulations and wavefront aberrations including spherical errors were analyzed over a 4-mm pupil area. Results: In the first cat under anesthesia, at three out of seven stimulus positions, 0.2 D hyperopic accommodative responses were observed and in two orientations, myopic responses were observed. For the other cat, weak accommodative responses including astigmatic changes were observed. In the sacrificed condition of the second cat, 0.1 D myopic response was observed for one stimulus orientation and the smaller responses were observed at six out of eight stimulus positions. No accommodative responses were elicited for the enucleated porcine eyes. Conclusions: In the anesthetized cats, electrical stimulation of the SSPC induced accommodative responses; the responses were unstable and weaker than the responses by the ciliary nerve stimulations we observed in our previous study. Small accommodative responses were observed after one of two cats had been sacrificed, but no accommodative responses were detected in the enucleated porcine eyes. Further studies are needed to confirm difference in the accommodation functions in the two species.