70 resultados para two input two output
Resumo:
We report observations of the diffraction pattern resulting when a nematic liquid crystal is illuminated with two equal power, high intensity beams of light from an Ar+ laser. The time evolution of the pattern is followed from the initial production of higher diffraction orders to a final striking display arising as a result of the self-diffraction of the two incident beams. The experimental results are described with good approximation by a model assuming a phase distribution at the output plane of the liquid crystal in the form of the sum of a gaussian and a sinusoid.
Resumo:
We describe the use of arrayed waveguide gratings (AWGs) in the interrogation of fiber Bragg gratings (FBGs) for dynamic strain measurement. The ratiometric AWG output was calibrated in a static deflection experiment over a ±200 με range. Dynamic strain measurement was demonstrated with a FBG in a conventional single-mode fiber mounted on the surface of a vibrating cantilever and on a piezoelectric actuator, giving a resolution of 0.5 με at 2.4 kHz. We present results of this technique extended to measure the dynamic differential strain between two FBG pairs within a multicore fiber. An arbitrary cantilever oscillation of the multicore fiber was determined from curvature measurements in two orthogonal axes at 1125 Hz with a resolution of 0.05 m-1. © 2006 Optical Society of America.
Resumo:
We extend a meshless method of fundamental solutions recently proposed by the authors for the one-dimensional two-phase inverse linear Stefan problem, to the nonlinear case. In this latter situation the free surface is also considered unknown which is more realistic from the practical point of view. Building on the earlier work, the solution is approximated in each phase by a linear combination of fundamental solutions to the heat equation. The implementation and analysis are more complicated in the present situation since one needs to deal with a nonlinear minimization problem to identify the free surface. Furthermore, the inverse problem is ill-posed since small errors in the input measured data can cause large deviations in the desired solution. Therefore, regularization needs to be incorporated in the objective function which is minimized in order to obtain a stable solution. Numerical results are presented and discussed. © 2014 IMACS.
Resumo:
Parameter optimization of a two-stage Raman fibre converters (RFC) based on phosphosilicate core fiber was presented. The optimal operational regime was determined and tolerance of the converter against variations of laser parameters was analyzed. Converter was pumped by ytterbium-doped double-clad fibre laser with a maximum output power of 3.8W at 1061 nm. A phosphosilicate-core RFC with enhanced performance was fabricated using the results of numerical modelling.
Resumo:
The recent advancement in the growth technology of InGaN/GaN has decently positioned InGaN based white LEDs to leap into the area of general or daily lighting. Monolithic white LEDs with multiple QWs were previously demonstrated by Damilano et al. [1] in 2001. However, there are several challenges yet to be overcome for InGaN based monolithic white LEDs to establish themselves as an alternative to other day-to-day lighting sources [2,3]. Alongside the key characteristics of luminous efficacy and EQE, colour rendering index (CRI) and correlated colour temperature (CCT) are important characteristics for these structures [2,4]. Investigated monolithic white structures were similar to that described in [5] and contained blue and green InGaN multiple QWs without short-period superlattice between them and emitting at 440 nm and 530 nm, respectively. The electroluminescence (EL) measurements were done in the CW and pulse current modes. An integration sphere (Labsphere “CDS 600” spectrometer) and a pulse generator (Agilent 8114A) were used to perform the measurements. The CCT and Green/Blue radiant flux ratio were investigated at extended operation currents from 100mA to 2A using current pulses from 100ns to 100μs with a duty cycle varying from 1% to 95%. The strong dependence of the CCT on the duty cycle value, with the CCT value decreasing by more than three times at high duty cycle values (shown at the 300 mA pulse operation current) was demonstrated (Fig. 1). The pulse width variation seems to have a negligible effect on the CCT (Fig. 1). To account for the joule heating, a duty cycle more than 1% was considered as an overheated mode. For the 1% duty cycle it was demonstrated that the CCT was tuneable in three times by modulating input current and pulse width (Fig. 2). It has also been demonstrated that there is a possibility of keeping luminous flux independent of pulse width variation for a constant value of current pulse (Fig. 3).
Resumo:
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Resumo:
Detailed theoretical and numerical investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals are undertaken, for the first time, in optical amplification and chromatic dispersion (CD) compensation free single mode fiber (SMF) intensity-modulated and directdetection (IMDD) systems using two cascaded semiconductor optical amplifiers in a counterpropagating configuration as an intensity modulator (TC-SOA-CC-IM). A theoretical model describing the characteristics of this configuration is developed. Extensive performance comparisons are also made between the TC-SOA-CC and the single SOA intensity modulators. It is shown that, the TC-SOA-CC reaches its strongly saturated region using a lower input optical power much faster than the single SOA resulting in significantly reduced effective carrier lifetime and thus wide TC-SOA-CC bandwidths. It is shown that at low input optical power, we can increase the signal line rate almost 115% which will be more than twice the transmission performance offered by single SOA. In addition, the TCSOA-CC-IM is capable of supporting signal line rates higher than corresponding to the SOA-IM by using 10dB lower input optical powers. For long transmission distance, the TC-SOA-CC-IM has much stronger CD compensation capability compared to the SOA-IM. In addition the use of TC-SOA-CC-IM is more effective regarding the capability to benefit from the CD compensation for shorter distances starting at 60km SMF, whilst for the SOA-IM starting at 90km. © 2014 Optical Society of America.
Resumo:
Raman fibre lasers and converters using the stimulated Raman scattering (SRS) in optical fibre waveguide are attractive for many applications ranging from telecommunications to bio-medical applications [1]. Multiple-wavelength Raman laser sources emitting at two and more wavelengths have been proposed to increase amplification spectrum of Raman fibre amplifiers and to improve noise characteristics [2,3]. Typically, a single fibre waveguide is used in such devices while multi-wavelength generation is achieved by employing corresponding number of fibre Bragg grating (FBG) pairs forming laser resonator. This approach, being rather practical, however, might not provide a good level of cross coherence between radiation generated at different wavelengths due to difference in FBGs and random phase fluctuations between the two wavelengths. In this work we examine a scheme of two-wavelength Raman fibre laser with high-Q cavity based on spectral intracavity broadening [3]. We demonstrate feasibility of such configuration and perform numerical analysis clarifying laser operation using an amplitude propagation equation model that accounts for all key physical effects in nonlinear fibre: dispersion, Kerr nonlinearity, Raman gain, depletion of the Raman pump wave and fibre losses. The key idea behind this scheme is to take advantage of the spectral broadening that occurs in optical fibre at high powers. The effect of spectral broadening leads to effective decrease of the FBGs reflectivity and enables generation of two waves in one-stage Raman laser. The output spectrum in the considered high-Q cavity scheme corresponds to two peaks with 0.2 - 1 nm distance between them. © 2011 IEEE.
Resumo:
We report on a theoretical study of polarization impairments in periodically spun fiber Raman amplifiers. Based on the Stochastic Generator approach we have derived equations for polarization dependent gain and mean-square gain fluctuations. We show that periodically spun fiber can work as a Raman polarizer but it suffers from increased polarization dependent gain and gain fluctuations. Unlike this, application of a depolarizer can result in suppression of polarization dependent gain and gain fluctuations. We demonstrate that it is possible to design a new fiber Raman polarizer by combining a short fiber without spin and properly chosen parameters and a long periodically spun fiber. This polarizer provides almost the same polarization pulling for all input signal states of polarization and so have very small polarization dependent gain. The obtained results can be used in high-speed fiber optic communication for design of quasi-isotropic spatially and spectrally transparent media with increased Raman gain. © 2011 IEEE.
Resumo:
We propose and demonstrate a switchable dual-wavelength erbium-doped fibre ring laser. Competition between the lasing wavelengths in erbium-doped fibre laser at room temperature is suppressed by incorporating a two-channel fibre Bragg grating (TC-FBG), which consists of two highly localized sub-gratings fabricated by femtosecond laser in single mode fibre. Wavelengths and polarization states of the lasing lines are selected by the TC-FBG. Laser output can be switched between single- and dual-wavelength operations by simply adjusting the polarization controller. Stable dual-wavelength output is verified at room temperature with a power fluctuation less than 0.27 dB, and wavelength fluctuation less than 0.004 nm.