62 resultados para temporal lobe epilepsy
Resumo:
The neural bases of altered consciousness in patients with epilepsy during seizures and at rest have raised significant interest in the last decade. This exponential growth has been supported by the parallel development of techniques and methods to investigate brain function noninvasively with unprecedented spatial and temporal resolution. In this article, we review the contribution of magnetoencephalography to deconvolve the bioelectrical changes associated with impaired consciousness during seizures. We use data collected from a patient with refractory absence seizures to discuss how spike-wave discharges are associated with perturbations in optimal connectivity within and between brain regions and discuss indirect evidence to suggest that this phenomenon might explain the cognitive deficits experienced during prolonged 3/s spike-wave discharges. © 2013 Elsevier Inc.
Resumo:
Magnetoencephalographic (MEG) signals, like electroencephalographic (EEG) measures, are the direct extracranial manifestations of neuronal activation. The two techniques can detect time-varying changes in electromagnetic activity with a sub-millisecond time resolution. Extra-cranial electromagnetic measures are the cornerstone of the non-invasive diagnostic armamentarium in patients with epilepsy. Their extremely high temporal resolution – comparable to intracranial recordings – is the basis for a precise definition of onset and propagation of ictal and interictal abnormalities. Given the cost of the infrastructure and equipment, MEG has yet to develop into a routinely applicable diagnostic tool in clinical settings. However, in recent years, an increasing number of patients with epilepsy have been investigated – usually in the context of presurgical evaluation of refractory epilepsies – and initial encouraging results have been reported. We will briefly review the principles and the technology behind MEG and its contribution in the diagnostic work-up of patients with epilepsy.