125 resultados para single-frequency fiber amplifier
Resumo:
We investigate numerically the effect of ultralong Raman laser fiber amplifier design parameters, such as span length, pumping distribution and grating reflectivity, on the RIN transfer from the pump to the transmitted signal. Comparison is provided to the performance of traditional second-order Raman amplified schemes, showing a relative performance penalty for ultralong laser systems that gets smaller as span length increases. We show that careful choice of system parameters can be used to partially offset such penalty. © 2010 Optical Society of America.
Resumo:
Using excessively tilted fiber grating (Ex-TFG) inscribed in standard single mode fiber, we developed a novel label-free immunoassay for specific detection of porcine circovirus type 2 (PCV2), which is a minim animal virus. Staphylococcal protein A (SPA) was used to modify the silanized fiber surface thus forming a SPA layer, which would greatly enhance the proportion of anti-PCV2 monoclonal antibody (MAb) bioactivity, thus improving the effectiveness of specific adsorption and binding events between anti-PCV2 MAbs and PCV2 antigens. Immunoassay experiments were carried out by monitoring the resonance wavelength shift of the proposed sensor under different PCV2 titer levels. Anti-PCV2 MAbs were thoroughly dissociated from the SPA layer by treatment with urea, and recombined to the SPA layer on the sensor surface for repeated immunoassay of PCV2. The specificity of the immunosensor was inspected by detecting porcine reproductive and respiratory syndrome virus (PRRSV) first, and PCV2 subsequently. The results showed a limit of detection (LOD) for the PCV2 immunosensor of ~9.371TCID50/mL, for a saturation value of ~4.801×103TCID50/mL, with good repeatability and excellent specificity.
Resumo:
We report a two-stage diode-pumped Er-doped fiber amplifier operating at the wavelength of 1550 nm at the repetition rate of 10-100 kHz with an average output power of up to 10 W. The first stage comprising Er-doped fiber was core-pumped at the wavelength of 1480 nm, whereas the second stage comprising double-clad Er/Yb-doped fiber was clad-pumped at the wavelength of 975 nm. The estimated peak power for the 0.4-nm full-width at half-maximum laser emission at the wavelength of 1550 nm exceeded 4-kW level. The initial 100-ns seed diode laser pulse was compressed to 3.5 ns as a result of the 34-dB total amplification. The observed 30-fold efficient pulse compression reveals a promising new nonlinear optical technique for the generation of high power short pulses for applications in eye-safe ranging and micromachining.
Resumo:
The gain-switched, single frequency operation of an external cavity grating-coupled surface emitting laser with a wavelength tuning range of 100 nm was presented. The light in the grating section was coupled out of the laser at a specific angle to the surface of the device. Analysis showed that within the driving current range, lasing in the device only occurred when the external cavity was properly aligned.
Resumo:
An astigmatic scheme of a laser wavelength meter based on a single air-gap Fizeau interferometer is described. For a multimode laser, the accuracy in determining the center of gravity of a spectrum is within 1GHz. Two complementary testing techniques are proposed for the instrument. By using them, it was shown for the first time that, for this type of meters, a systematic error arises and increases with a decrease in the radiation-spectrum width. The effect is periodic in the lasing frequency and results from a weak beam that is brought about by a reflection from the front surface of the interferometer. Moreover, in the previously designed optical schemes, this effect is so strong that unambiguous determination of the wavelength of a single-frequency radiation is impossible. The use of an astigmatic scheme helps additionally attenuate the influence of the third beam, thus eliminating the ambiguity in the results and reducing the absolute error to a value of ±1.5 GHz.
Resumo:
We demonstrate that the transmission of 40 Gbits/s return-to-zero differential phase-shift keying (RZ-DPSK) signals is robust to lumped dispersion mapping on a typical installed terrestrial single-mode fiber/dispersion compensating fiber (SMF-DCF) link and will withstand, in this case, propagation through over 800 km of SMF with zero in-line group-velocity dispersion compensation while maintaining similar performance to configurations with periodic mapping. We establish that upgrading similar point-to-point links, which have lumped dispersion maps, are compatible with 40 Gbits/s RZ-DPSK and that economic benefits can be realized when implementing lumped dispersion mapping in new 40 Gbits/s RZ-DPSK terrestrial links, while incurring a relatively low performance penalty. (c) 2008 Optical Society of America.
Resumo:
We investigate full-field detection-based maximum-likelihood sequence estimation (MLSE) for chromatic dispersion compensation in 10 Gbit/s OOK optical communication systems. Important design criteria are identified to optimize the system performance. It is confirmed that approximately 50% improvement in transmission reach can be achieved compared to conventional direct-detection MLSE at both 4 and 16 states. It is also shown that full-field MLSE is more robust to the noise and the associated noise amplifications in full-field reconstruction, and consequently exhibits better tolerance to nonoptimized system parameters than full-field feedforward equalizer. Experiments over 124 km spans of field-installed single-mode fiber without optical dispersion compensation using full-field MLSE verify the theoretically predicted performance benefits.
Resumo:
We investigate the pattern-dependent decoding failures in full-field electronic dispersion compensation (EDC) by offline processing of experimental signals, and find that the performance of such an EDC receiver may be degraded by an isolated "1" bit surrounded by long strings of consecutive "0s". By reducing the probability of occurrence of this kind of isolated "1" and using a novel adaptive threshold decoding method, we greatly improve the compensation performance to achieve 10-Gb/s on-off keyed signal transmission over 496-km field-installed single-mode fiber without optical dispersion compensation.
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.
Resumo:
In this work, we analyzed by means of numerical and laboratory experiments the resilience of 40 Gb/s amplitude shift keying modulation formats to transmission impairments in standard single-mode fiber lines as well as to optical filtering introduced by the optical add/drop multiplexer cascade. Our study is a pre-requisite to assess the implementation of cost-effective 40 Gb/s modulation technology in next generation high bit-rate robust optical transport networks.
Resumo:
Self-similar optical pulses (or “similaritons”) of parabolic intensity profile can be found as asymptotic solutions of the nonlinear Schr¨odinger equation in a gain medium such as a fiber amplifier or laser resonator. These solutions represent a wide-ranging significance example of dissipative nonlinear structures in optics. Here, we address some issues related to the formation and evolution of parabolic pulses in a fiber gain medium by means of semi-analytic approaches. In particular, the effect of the third-order dispersion on the structure of the asymptotic solution is examined. Our analysis is based on the resolution of ordinary differential equations, which enable us to describe the main properties of the pulse propagation and structural characteristics observable through direct numerical simulations of the basic partial differential equation model with sufficient accuracy.
Resumo:
We experimentally compare the performance of standard single-mode fiber (SSMF) and UltraWave fiber (UWF) for ultra-long-haul (ULH) 40-Gb/s wavelength- division- multiplexing transmissions. We used the carrier-suppressed return-to-zero amplitude-shift-keying (CSRZ-ASK) and the carrier-suppressed return-to-zero differential-phase-shift-keying (CSRZ-DPSK) formats, which are particularly well-adapted to 40-Gb/s pulse-overlapped propagation. We demonstrate that transmission distance well beyond 2000 km can be reached on UWF with both the CSRZ-ASK and CSRZ-DPSK formats, or on SSMF with the CSRZ-DPSK format only, thus indicating that SSMF-based infrastructure of incumbent carriers can be upgraded at 40-Gb/s channel rates to ULH distances. © 2007 IEEE.
Resumo:
Vertical-external-cavity surface-emitting lasers (VECSELs) have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multi-mode or single-frequency continuouswave operation, and on the other hand two-color as well as mode-locked emission. Particularly, the combination of semiconductor gain medium and external cavity provides a unique access to high-brightness output, a high beam quality and wavelength flexibility. Moreover, the exploitation of intra-cavity frequency conversion further extends the achievable radiation wavelength, spanning a spectral range from the UV to the THz. In this work, recent advances in the field of VECSELs are summarized and the demonstration of self-mode-locking (SML) VECSELs with sub-ps pulses is highlighted. Thereby, we present studies which were not only performed for a quantum-well-based VECSEL, but also for a quantum-dot VECSEL.
Resumo:
An approach to realizing simultaneous measurement of refractive index (RI) and temperature based on a microfiber-based dual inline Mach-Zehnder interferometer (MZI) is proposed and demonstrated. Due to different interference mechanisms, as one interference between the core mode and the lower order cladding mode in the sensing single-mode fiber and the other interference between the fundamental mode and the high-order mode in the multimode microfiber, the former interferometer achieves RI sensitivity of -23.67 nm/RIU and temperature sensitivity of 81.2 pm/oC, whereas those of the latter are 3820.23 nm/RIU, and -465.7 pm/oC, respectively. The large sensitivity differences can provide a more accurate demodulation of RI and temperature. The sensor is featured with multiparameters measurement, compact structure, high sensitivity, low cost, and easy fabrication.
Resumo:
We investigate the pattern-dependent decoding failures in full-field electronic dispersion compensation (EDC) by offline processing of experimental signals, and find that the performance of such an EDC receiver may be degraded by an isolated "1" bit surrounded by long strings of consecutive "0s". By reducing the probability of occurrence of this kind of isolated "1" and using a novel adaptive threshold decoding method, we greatly improve the compensation performance to achieve 10-Gb/s on-off keyed signal transmission over 496-km field-installed single-mode fiber without optical dispersion compensation.