67 resultados para optical heterodyne detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical fibre based sensors are transforming industry by permitting monitoring in hitherto inaccessible environments or measurement approaches that cannot be reproduced using conventional electronic sensors. A multitude of techniques have been developed to render the fibres sensitive to a wide range of parameters including: temperature, strain, pressure (static and dynamic), acceleration, rotation, gas type, and specific biochemical species. Constructed entirely of glass or polymer material, optical fibre devices like fibre gratings offer the properties: low loss, dielectric construction, small size, multiplexing, and so on [1-3]. In this paper, the authors will show the latest developing industrial applications, using polymer optical fibre (POF) devices, and comparing their performance with silica optical fibre devices. The authors address two pressing commercial requirements. The first concerns the monitoring of fuel level in civil aircraft. There is a strong motivation in the aerospace industry to move away from electrical sensors, especially in the fuel system. This is driven by the need to eliminate potential ignition hazards, the desire to reduce cabling weight and the need to mitigate the effects of lightning strikes in aircraft where the conventional metallic skin is increasingly being replaced by composite materials. In this case, the authors have developed pressure sensors based on a diaphragm in which a polymer fibre Bragg grating (POFBG) has been embedded [3]. These devices provide high pressure sensitivity enabling level measurement in the mm range. Also, it has developed an approach incorporating several such sensors which can compensate for temperature drifts and is insensitive to fluid density. Compared with silica fibre-based sensors, their performance is highly enhanced. Initial results have attracted the interest of Airbus from UK, who is keen to explore the potential of optical technology in commercial aircraft. The second concerns the monitoring of acoustic signals and vibration in the subsea environment, for applications in geophysical surveying and security (detection of unwanted craft or personnel). There is strong motivation to move away from electrical sensors due to the bulk of the sensor and associated cabling and the impossibility of monitoring over large distances without electrical amplification. Optical approaches like optical hydrophones [5] offer a means of overcoming these difficulties. In collaboration with Kongsberg from Norway, the authors will exploit the sensitivity improvements possible by using POF instead of silica fibre. These improvements will arise as a result of the much more compliant nature of POF compared to silica fibre (3 GPa vs 72 GPa, respectively). Essentially, and despite the strain sensitivity of silica and POFBGs being very similar, this renders the POF much more sensitive to the applied stress resulting from acoustic signals or vibration. An alternative way of viewing this is that the POF is better impedance-matched to the surrounding environment (water for the intended applications), because although its impedance is higher than that of water, it is nearly an order of magnitude smaller than that of silica. Finally, other future industrial applications will be presented and discussed, showing the vast range of the optical fiber devices in sensing applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stress sensitivity of polymer optical fibre (POF) based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions is investigated. POF has received high interest in recent years due to its different material properties compared to its silica counterpart. Biocompatibility, a higher failure strain and the highly elastic nature of POF are some of the main advantages. The much lower Young’s modulus of polymer materials compared to silica offers enhanced stress sensitivity to POF based sensors which renders them great candidates for acoustic wave receivers and any kind of force detection. The main drawback in POF technology is perhaps the high fibre loss. In a lossless fibre the sensitivity of an interferometer is proportional to its cavity length. However, the presence of the attenuation along the optical path can significantly reduce the finesse of the Fabry-Perot interferometer and it can negatively affect its sensitivity at some point. The reflectivity of the two gratings used to form the interferometer can be also reduced as the fibre loss increases. In this work, a numerical model is developed to study the performance of POF based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions. Various optical and physical properties are considered such as grating physical length, grating effective length which indicates the point where the light is effectively reflected, refractive index modulation of the grating, cavity length of the interferometer, attenuation and operating wavelength. Using this model, we are able to identify the regimes in which the PMMA based sensor offer enhanced stress sensitivity compared to silica based one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatiooral intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By covering a monolayer of p-doped graphene on a D-shaped microstructured FBG, a graphene based D-shaped polymer fiber Bragg grating is proposed to detect human erythrocytes, with clinic acceptability and high sensitivity of sub ppm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored the potential of a carbon nanotube (CNT) coating working in conjunction with a recently developed localized surface plasmon (LSP) device (based upon a nanostructured thin film consisting of of nano-wires of platinum) with ultra-high sensitivity to changes in the surrounding index. The uncoated LSP sensor’s transmission resonances exhibited a refractive index sensitivity of Δλ/Δn ~ -6200nm/RIU and ΔΙ/Δn ~5900dB/RIU, which is the highest reported spectral sensitivity of a fiber optic sensor to bulk index changes within the gas regime. The complete device provides the first demonstration of the chemically specific gas sensing capabilities of CNTs utilizing their optical characteristics. This is proven by investigating the spectral response of the sensor before and after the adhesion of CNTs to alkane gases along with carbon dioxide. The device shows a distinctive spectral response in the presence of gaseous CO2 over and above what is expected from general changes in the bulk refractive index. This fiber device yielded a limit of detection of 150ppm for CO2 at a pressure of one atmosphere. Additionally the adhered CNTs actually reduce sensitivity of the device to changes in bulk refractive index of the surrounding medium. The polarization properties of the LSP sensor resonances are also investigated and it is shown that there is a reduction in the overall azimuthal polarization after the CNTs are applied. These optical devices offer a way of exploiting optically the chemical selectivity of carbon nanotubes, thus providing the potential for real-world applications in gas sensing in many inflammable and explosive environments. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer optical fibre (POF) is a relatively new and novel technology that presents an innovative approach for ultrasonic endoscopic applications. Currently, piezo electric transducers are the typical detectors of choice, albeit possessing a limited bandwidth due to their resonant nature and a sensitivity that decreases proportionally to their size. Optical fibres provide immunity from electromagnetic interference and POF in particular boasts more suitable physical characteristics than silica optical fibre. The most important of these are lower acoustic impedance, a reduced Young's Modulus and a higher acoustic sensitivity than single-mode silica fibre at both 1 MHz and 10 MHz. POF therefore offers an interesting alternative to existing technology. Intrinsic fibre structures such as Bragg gratings and Fabry-Perot cavities may be inscribed into the fibre core using UV lasers. These gratings are a modulation of the refractive index of the fibre core and provide the advantages of high reflectivity, customisable bandwidth and point detection. We present a compact in fibre ultrasonic point detector based upon a POF Bragg grating (POFBG) sensor. We demonstrate that the detector is capable of leaving a laboratory environment by using connectorised fibre sensors and make a case for endoscopic ultrasonic detection through use of a mounting structure that better mimics the environment of an endoscopic probe. We measure the effects of water immersion upon POFBGs and analyse the ultrasonic response for 1, 5 and 10 MHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.