347 resultados para optical fibre sensing
Resumo:
We present a thorough study on the development of a polymer optical fibre-based tuneable filter utilizing an intra-core Bragg grating that is electrically tuneable, operating at 1.55 νm. The Bragg grating is made tuneable using a thin-film resistive heater deposited on the surface of the fibre. The polymer fibre was coated via the photochemical deposition of a Pd/Cu metallic layer with the procedure induced by VUV radiation at room temperature. The resulting device, when wavelength tuned via Joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of -13.4 pm mW-1 and time constant of 1.7 s-1. A basic theoretical study verified that for this fibre type one can treat the device as a one-dimensional system. The model was extended to include the effect of input electrical power changes on the refractive index of the fibre and subsequently to changes in the Bragg wavelength of the grating, showing excellent agreement with the experimental measurements. © 2007 IOP Publishing Ltd.
Resumo:
This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 µm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.
Resumo:
A frequency-modulated continuous-wave technique is used to detect the presence of frequency shifts in the Rayleigh-backscattered light in a single-mode optical fiber as a result of a changing temperature. The system is able to detect a rate of temperature change of 0.014 K/s, when a 20-cm length of fiber is heated. The system is also able to demonstrate a spatial resolution of better than 15 cm.
Resumo:
We report an implementation of optical fibre sensors based on fibre Bragg gratings with excessively tilted (>45°) structures, showing distinctive polarisation characteristics, desirable low thermal-cross-sensitivity and enhanced responsivity to surrounding-medium-refractive-index.
Resumo:
Water is a common impurity of jet fuel, and can exist in three forms: dissolved in the fuel, as a suspension and as a distinct layer at the bottom of the fuel tank. Water cannot practically be eliminated from fuel but must be kept to a minimum as large quantities can cause engine problems, particularly when frozen, and the interface between water and fuel acts as a breeding ground for biological contaminants. The quantities of dissolved or suspended water are quite small, ranging from about 10 ppm to 150 ppm. This makes the measurement task difficult and there is currently a lack of a convenient, electrically passive system for water-in-fuel monitoring; instead the airlines rely on colorimetric spot tests or simply draining liquid from the bottom of fuel tanks. For all these reason, people have explored different ways to detect water in fuel, however all these approaches have problems, e.g. they may not be electrically passive or they may be sensitive to the refractive index of the fuel. In this paper, we present a simple, direct and sensitive approach involving the use of a polymer optical fibre Bragg grating to detect water in fuel. The principle is that poly(methyl methacrylate) (PMMA) can absorb moisture from its surroundings (up to 2% at 23 °C), leading to both a swelling of the material and an increase in refractive index with a consequent increase in the Bragg wavelength of a grating inscribed in the material.
Resumo:
We describe the production and characterization of FC/PC connectorised fibre Bragg grating sensors in polymer fibre. Sensors were recorded in few-moded and single mode microstructured fibre composed of poly (methyl methacrylate). © 2013 SPIE.
Resumo:
This paper provides a review of the current state of research and development into polymer fibre Bragg gratings, along with a description of some current challenges. © 2012 OSA.
Resumo:
A report is made that the rate at which type IA fibre Bragg gratings may be inscribed is related to the intensity of the UV inscription laser and that these gratings may be written in only a few minutes. Also presented is the model of the refractive index of type IA gratings.
Resumo:
The annealing properties of Type IA Bragg gratings are investigated and compared with Type I and Type IIA Bragg gratings. The transmission properties (mean and modulated wavelength components) of gratings held at predetermined temperatures are recorded from which decay characteristics are inferred. Our data show critical results concerning the high temperature stability of Type IA gratings, as they undergo a drastic initial decay at 100°C, with a consequent mean index change that is severely reduced at this temperature However, the modulated index change of IA gratings remains stable at lower annealing temperatures of 80°C, and the mean index change decays at a comparable rate to Type I gratings at 80°C. Extending this work to include the thermal decay of Type IA gratings inscribed under strain shows that the application of strain quite dramatically transforms the temperature characteristics of the Type IA grating, modifying the temperature coefficient and annealing curves, with the grating showing a remarkable improvement in high temperature stability, leading to a robust grating that can survive temperatures exceeding 180°C. Under conditions of inscription under strain it is found that the temperature coefficient increases, but is maintained at a value considerably different to the Type I grating. Therefore, the combination of Type I and IA (strained) gratings make it possible to decouple temperature and strain over larger temperature excursions.
Resumo:
In this paper we report on investigations of some of the factors that have a bearing on the reliability and repeatability of polymer fibre Bragg gratings. The main issues discussed are the fibre preform composition, the fibre drawing conditions and the thermal history of the fibre grating.
Resumo:
We present the results of femtosecond laser microstructuring of optical fibres by direct access of the fibre end face, both at the surface and several hundred microns into the fibre, to realise one-and two-dimensional grating structures and optical fibre splitters, respectively. We show the versatility of this simple but effective inscription method, where we demonstrate classic multiple slit diffraction patterns and show the potential for coarse wavelength division multiplexing for sensor signals. A key advantage for the fibre splitter is that the inscription method avoids the use of oil immersion that compensate for the fibre curvature in the standard side writing method. © 2012 SPIE.
Resumo:
We report experimental measurements of the strain and temperature sensitivity of the optical phase in a singlemode polymer optical fibre. These values were obtained by measuring optical path length change using a Mach-Zender interferometer.
Resumo:
We experimentally demonstrate adiabatic soliton propagation in the fundamental mode of a few mode optical fibre and more complex behaviour in a higher order mode, indicating that the impact of nonlinearities differs for each mode.
Resumo:
The inscription of Bragg gratings has been demonstrated in PMMA-based polymer optical fibre. The water affinity of PMMA can introduce significant wavelength change in a polymer optical fibre Bragg grating (POFBG). In polymer optical fibre losses are much higher than with silica fibre. Very strong absorption bands related to higher harmonics of vibrations of the C-H bond dominate throughout the visible and near infrared. Molecular vibration in substances generates heat, which is referred to as the thermal effect of molecular vibration. This means that a large part of the absorption of optical energy in those spectral bands will convert into thermal energy, which eventually drives water content out of the polymer fibre and reduces the wavelength of POFBG. In this work we have investigated the wavelength stability of POFBGs in different circumstances. The experiment has shown that the characteristic wavelength of a POFBG starts decreasing after a light source is applied to it. This decrease continues until equilibrium inside the fibre is established, depending on the initial water content inside the fibre, the surrounding humidity, the optical power applied, and the fibre size. Our investigation has shown that POFBGs operating at around 850 nm show much smaller wavelength reduction than those operating at around 1550 nm in the same fibre; POFBGs with different diameters show different changes; POFBGs powered by a low level light source, or operating in a very dry environment are least affected by this thermal effect.