71 resultados para laryngeal mask


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear polarization rotation based all-fiber passively modelocked Tm3+-doped fiber laser is demonstrated by using a 45° tilted fiber grating (TFG) as an in-line polarizer. The 45° TFG centered at 2000 nm with polarization dependent loss (PDL) of >12 dB at 1850 nm∼2150 nm range was UV inscribed for the first time in SM28 fiber using a 244 nm Ar+ continuous wave laser and a phase mask with 25 mm long uniform pitch and titled period pattern of 33.7° with respect to the fiber axis. Stable soliton pulses centered at 1992.7 nm with 2.02 nm FWHM bandwidth were produced at a repetition rate of 1.902 MHz with pulse duration of 2.2 ps and pulse energy of 74.6 pJ. As increased pump power, the laser also can operate at noise-like regime with 18.1 nm FWHM bandwidth and pulse energy of up to 250.1 nJ. Using the same 45° TFG, both stable soliton and noise-like mode-locking centered at ∼1970 nm and ∼2050 nm, were also achieved by shortening and extending the length of Tm3+-doped fiber, respectively, exhibiting advantages of broadband and low insertion loss at 2 μm band.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new and simple fabrication technique is reported for the UV inscription of intrinsically apodized chirped fibre gratings at an arbitrary Bragg wavelength employing a single chirped phase-mask in a scanning Talbot interferometer set-up. Chirped gratings have been successfully produced over a large wavelength range and with bandwidths up to 5 nm. These gratings exhibit the time-delay response of a small ripple effect. In the present paper a comparison with previously reported fabrication methods is given, showing the advantages and disadvantages of the different methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bragg gratings photo-inscribed in polymer optical fibers (POFs) are more sensitive to temperature and pressure than their silica counterparts, because of their larger thermo-optic coefficient and smaller Young's modulus. Polymer optical fiber Bragg gratings (POFBGs) are most often photo-written in poly(methylmethacrylate) (PMMA) based materials using a continuous-wave 325 nm HeCd laser. In this work, we present the first study about birefringence effects in POFBGs manufactured in different types of fiber. To achieve this, highly reflective (> 90%) gratings were produced with the phase mask technique. Their spectral response was then monitored in transmission with polarized light. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyzer. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. An inverse scattering technique applied to the experimental data provided an estimate of the photo-induced birefringence value arising from the side fabrication process. The response to lateral force was finally investigated for various incident directions using the PDL response of FBGs manufactured in step-index POFs. As the force induced birefringence adds to the photo-induced one, a force dependent evolution of the PDL maximum value was noticed, with a good temperature-insensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an efficient power tapping device working in near infra-red (800 nm) wavelength region based on UV-in- scribed 45° tilted fiber grating (45°-TFG) structure. Five 45°-TFGs were UV-inscribed in hydrogenated PS750 fiber using a custom-designed phase mask with different grating lengths of 3 mm, 5 mm, 9 mm, 12 mm and 15 mm, showing polarization dependent losses (PDLs) of 1 dB, 3 dB, 7 dB, 10 dB and 13 dB, respectively. The power side-tapping efficiency is clearly depending on the grating strength. It has been identified that the power tapping efficiency increases with the grating strength and deceases along the grating length. The side-tapped power profile has also been examined in azimuthal direction, showing a near-Gaussian distribution. These experimental results clearly demonstrated that 45°- TFGs may be used as in-fiber power tapping devices for applications requiring in-line signal monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polymer-core/silica-cladding hybrid optical fiber is implemented by filling a capillary with UV-curable epoxy and a following UV-laser scanning exposure. A fiber Bragg grating is successfully inscribed in parallel using a phase mask. The experimental results show a reduced thermal response for the FBG and a theoretical analysis for such a hybrid optical fiber is performed which corroborates existing of a turning temperature for minimized thermal response. © 2014 SPIE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present the design and fabrication of multi-notch optical fibre Bragg gratings for suppressing OH emission lines in the near infrared spectra of the night sky for astrophysical applications. We demonstrate a novel approach of fabricating 2, 3 and 5-notch filters using the phase mask technology, which show a good match with the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful commercialization of a technology such as Fiber Bragg Gratings requires the ability to manufacture devices repeatably, quickly and at low cost. Although the first report of photorefractive gratings was in 1978 it was not until 1993, when phase mask fabrication was demonstrated, that this became feasible. More recently, draw tower fabrication on a production level and grating writing through the polymer jacket have been realized; both important developments since they preserve the intrinsic strength of the fiber. Potentially the most significant recent development has been femtosecond laser inscription of gratings. Although not yet a commercial technology, it provides the means of writing multiple gratings in the optical core providing directional sensing capability in a single fiber. Femtosecond processing can also be used to machine the fiber to produce micronscale slots and holes enhancing the interaction between the light in the core and the surrounding medium. © 2011 Bentham Science Publishers Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-invasive ventilation performed through an oronasal mask is a standard in clinical and homecare mechanical ventilation. Besides all its advantages, inevitable leaks through the mask cause errors in the feedback information provided by the airflow sensor and, hence, patient-ventilator asynchrony with multiple negative consequences. Here we investigate a new way to provide a trigger to the ventilator. The method is based on the measurement of rib cage movement at the onset of inspiration and during breathing by fibre-optic sensors. In a series of simultaneous measurements by a long-period fibre grating sensor and pneumotachograph we provide the statistical evidence of the 200 ms lag of the pneumo with respect the fibre-optic signal. The lag is registered consistently across three independent delay metrics. Further, we discuss exceptions from this trend and identify the needed improvements to the proposed fibre-sensing scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have UV-inscribed fiber Bragg gratings (FBGs), long-period gratings (LPGs), and tilted fiber gratings (TFGs) into mid-IR 2μm range using three common optical fiber grating fabrication techniques (two-beam holographic, phase mask, and point-by-point). The fabricated FBGs have been evaluated for thermal and strain response. It has been revealed that the FBG devices with responses in mid-IR range are much more sensitive to temperature than that in near-IR range. To explore the unique cladding mode coupling function, we have investigated the thermal and refractive index sensitivities of LPGs and identified that the coupled cladding modes in mid-IR range are also much more sensitive to temperature and surrounding medium refractive index change. The 45° tilted fiber gratings (45°-TFGs) as polarizing devices in mid-IR have been investigated for their polarization extinction characteristics. As efficient reflection filters and in-cavity polarizers, the mid-IR FBGs and 45°-TFGs have been employed in fiber laser cavity to realize multi-wavelength 2 μm Tm-doped CW and mode locked fiber lasers, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the limitation of the lens effect of the optical fibre and the inhomogeneity of the laser fluence on different cores, it is still challenging to controllably inscribe different fibre Bragg gratings (FBGs) in multicore fibres. In this article, we reported the FBG inscription in four core fibres (FCFs), whose cores are arranged in the corners of a square lattice. By investigating the influence of different inscription conditions during inscription, different results, such as simultaneous inscription of all cores, selectively inscription of individual or two cores, and even double scanning in perpendicular core couples by diagonal, are achieved. The phase mask scanning method, consisting of a 244nm Argon-ion frequencydoubled laser, air-bearing linear transfer stage and cylindrical lens and mirror setup, is used to precisely control the grating inscription in FCFs. The influence of three factors is systematically investigated to overcome the limitations, and they are the defocusing length between the cylindrical lens and the bare fibre, the rotation geometry of the fibre to the irritation beam, and the relative position of the fibre in the vertical direction of the laser beam.