209 resultados para high power fiber laser


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate an all-fiber Tm3+-doped silica fiber laser operating at a wide selectable wavelength range by using different fiber Bragg gratings (FBGs) as wavelength selection elements. With a specifically designed high reflective (HR) FBG and the fiber end as an output coupler, the lasing in the range from 1975 nm to 2150 nm with slope efficiency of >30% can be achieved. By employing a low reflective (LR) FBG as the output coupler, the obtainable wavelengths were extended to the range between 1925 nm and 2200 nm which is the reported longest wavelength from the Tm3+-doped silica fiber lasers. Furthermore, by employing a FBG array in the laser cavity and inducing bend loss between adjacent FBGs in the array, six switchable lasing wavelengths were achieved. © 2014 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have demonstrated a switchable dual wavelength fiber ring laser with a high degree of polarization output by using an intracavity 3-stage all fiber Lyot filter. The filter is formed by concatenating four 45° tilted fiber gratings separated by polarization maintaining fibers with a length ratio of 1:2:4 (20, 40, and 80 cm), giving a compact integrated configuration with reduced bandwidth. Switchable dual wavelength or single wavelength output at 1533.5 and 1563.3 nm has been achieved. The output lasing is considerably stable owing to the in-phase mode-selecting function of the multistage Lyot filter, and has a very high degree of polarization higher than 99.9%. © 1989-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper we experimentally demonstrate a generation in a short Raman fiber laser having 10 000 different longitudinal modes only. We design the laser using 12 meters of commercially available fiber. Contrary to the recently demonstrated single longitudinal mode DFB Raman laser and short DBR Raman laser, in the laser under study the number of modes is high enough for efficient nonlinear interactions. Experimentally measured time dynamics reveals the presence of mode correlations in the radiation: the measured extreme events lasts for more than 10 round-trips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a random fiber laser of ultimate efficiency. More than 2 Watts are generated from 0.5W of pump excess over the generation threshold. At higher power, an optical efficiency corresponds to the quantum limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, the polarization properties of a random fiber laser operating via Raman gain and random distributed feedback owing to Rayleigh scattering are investigated for the first time. Using polarized pump, the partially polarized generation is obtained with a generation spectrum exhibiting discrete narrow spectral features contrary to the smooth spectrum observed for the depolarized pump. The threshold, output power, degree of polarization and the state of polarization (SOP) of the lasing can be significantly influenced by the SOP of the pump. Fine narrow spectral components are also sensitive to the SOP of the pump wave. Furthermore, we found that random lasing's longitudinal power distributions are different in the case of polarized and depolarized pumping that results in considerable reduction of the generation slope efficiency for the polarized radiation. Our results indicate that polarization effects play an important role on the performance of the random fiber laser. This work improves the understanding of the physics of random lasing in fibers and makes a step forward towards the establishment of the vector model of random fiber lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate generation of sub-100 fs pulses at 1.5 μm in a mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating element. The laser features a genuine all-fiber configuration. Based on the unique polarization properties of the 45°-tilted fiber grating, we managed to produce sub-100 fs laser pulses through proper dispersion management. To the best of our knowledge, this is the shortest pulse generated from modelocked lasers with fiber gratings. The output pulse has an average power of 8 mW, with a repetition rate of 47.8 MHz and pulse energy of 1.68 nJ. The performance of laser also matches well the theoretical simulations. © 2013 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate an all-fiber passively Q-switched erbiumdoped fiber laser (EDFL) using a gold-nanosphere (GNS) based saturable absorber (SA) with evanescent field interaction. Using the interaction of evanescent field for fabricating SAs, long nonlinear interaction length of evanescent wave and GNSs can be achieved. The GNSs are synthesized from mixing solution of chloroauricacid (HAuCl4) and sodium citrate by the heating effects of the microfiber's evanescent field radiation. The proposed passively Q-switched EDFL could give output pulses at 1562 nm with pulse width of 1.78 μs, a repetition rate of 58.1 kHz, a pulse energy of 133 nJ and a output power of 7.7 mWwhen pumped by a 980 nm laser diode of 237 mW. © 2014 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diode-cladding-pumped mid-infrared passively Q-switched Ho 3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internal quantum efficiency (IQE) of a high-brightness blue LED has been evaluated from the external quantum efficiency measured as a function of current at room temperature. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined separately IQE of the LED structure and light extraction efficiency (LEE) of UX:3 chip. Full text Nowadays, understanding of LED efficiency behavior at high currents is quite critical to find ways for further improve­ment of III-nitride LED performance [1]. External quantum ef­ficiency ηe (EQE) provides integral information on the recom­bination and photon emission processes in LEDs. Meanwhile EQE is the product of IQE ηi and LEE ηext at negligible car­rier leakage from the active region. Separate determination of IQE and LEE would be much more helpful, providing correla­tion between these parameters and specific epi-structure and chip design. In this paper, we extend the approach of [2,3] to the whole range of the current/optical power variation, provid­ing an express tool for separate evaluation of IQE and LEE. We studied an InGaN-based LED fabricated by Osram OS. LED structure grown by MOCVD on sapphire substrate was processed as UX:3 chip and mounted into the Golden Dragon package without molding. EQE was measured with Labsphere CDS-600 spectrometer. Plotting EQE versus output power P and finding the power Pm corresponding to EQE maximum ηm enables comparing the measurements with the analytical rela­tionships ηi = Q/(Q+p1/2+p-1/2) ,p = P/Pm , and Q = B/(AC) 1/2 where A, Band C are recombination constants [4]. As a result, maximum IQE value equal to QI(Q+2) can be found from the ratio ηm/ηe plotted as a function of p1/2 +p1-1/2 (see Fig.la) and then LEE calculated as ηext = ηm (Q+2)/Q . Experimental EQE as a function of normalized optical power p is shown in Fig. 1 b along with the analytical approximation based on the ABC­model. The approximation fits perfectly the measurements in the range of the optical power (or operating current) variation by eight orders of magnitude. In conclusion, new express method for separate evaluation of IQE and LEE of III-nitride LEDs is suggested and applied to characterization of a high-brightness blue LED. With this method, we obtained LEE from the free chip surface to the air as 69.8% and IQE as 85.7% at the maximum and 65.2% at the operation current 350 rnA. [I] G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, "Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies," 1. AppL Phys., vol. 114, no. 7, pp. 071101, Aug., 2013. [2] C. van Opdorp and G. W. 't Hooft, "Method for determining effective non radiative lifetime and leakage losses in double-heterostructure las­ers," 1. AppL Phys., vol. 52, no. 6, pp. 3827-3839, Feb., 1981. [3] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, "A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes," 1. AppL Phys., vol. 106, no. II, pp. 114508, Dec., 2009. [4] Qi Dai, Qifeng Shan, ling Wang, S. Chhajed, laehee Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, Min-Ho Kim, and Yongjo Park, "Carrier recombination mechanisms and efficiency droop in GalnN/GaN light-emitting diodes," App/. Phys. Leu., vol. 97, no. 13, pp. 133507, Sept., 2010. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive liquid-level sensor based on dual-wavelength single-longitudinal-mode fiber laser is proposed and demonstrated. The laser is formed by exploiting two parallel arranged phase-shift fiber Bragg gratings (ps-FBGs), acting as ultra-narrow bandwidth filters, into a doublering resonators. By beating the dual-wavelength lasing output, a stable microwave signal with frequency stability better than 5 MHz is obtained. The generated beat frequency varies with the change of dual-wavelength spacing. Based on this characteristic, with one ps-FBG serving as the sensing element and the other one acting as the reference element, a highly sensitive liquid level sensor is realized by monitoring the beat frequency shift of the laser. The sensor head is directly bonded to a float which can transfer buoyancy into axial strain on the fiber without introducing other elastic elements. The experimental results show that an ultra-high liquidlevel sensitivity of 2.12 × 107 MHz/m within the measurement range of 1.5 mm is achieved. The sensor presents multiple merits including ultra-high sensitivity, thermal insensitive, good reliability and stability. © 2012 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random distributed feedback (DFB) fiber lasers have attracted a great attention since first demonstration [1]. Despite big advance in practical laser systems, random DFB fiber laser spectral properties are far away to be understood or even numerically modelled. Up to date, only generation power could be calculated and optimized numerically [1,2] or analytically [3] within the power balance model. However, spectral and statistical properties of random DFB fiber laser can not be found in this way. Here we present first numerical modelling of the random DFB fiber laser, including its spectral and statistical properties, using NLSE-based model. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lasers with random distributed feedback (DFB) owing to Rayleigh scattering in optical fibers [1] have attracted a great interest: a number of papers demonstrating new laser schemes and applications have been proposed [2-7] recently. Moreover, the generation output power and, more generally, generation power distribution could be described both analytically and numerically within simple balance models [8-9]. However, spectral properties of random DFB fiber lasers are not studied except some attempt made in [10]. Generation spectrum of random DFB fiber laser is quite broad (more than 1 nm), and physical mechanisms of its formation and broadening are still unclear. There is no any practical solution up to date to minimize the generation spectrum width. Here we experimentally show the way to minimize the generation spectral width. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and numerically demonstrate a novel simple method to produce optical Nyquist pulses based on pulse shaping in a passively mode-locked fiber laser with an in-cavity flat-top spectral filter. The proposed scheme takes advantage of the nonlinear in-cavity dynamics of the laser and offers the possibility to generate high-quality sinc-shaped pulses with widely tunable bandwidth directly from the laser oscillator. We also show that the use of a filter with a corrective convex profile relaxes the need for large nonlinear phase accumulation in the cavity by offsetting the concavity of the nonlinearly broadened pulse spectrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The random distributed feedback fiber laser operating via the stimulated Raman scattering and random distributed feedback based on the Rayleigh scattering is demonstrated in the 1.2 μm frequency band. The RDFB fiber laser generates at 1174 nm up to 2.4 W of output power with corresponding slope efficiency more than 30%. The output radiation has the spectral shape similar to the conventional Raman fiber lasers and spectral width less than 1.7 nm. © 2011 Pleiades Publishing, Ltd.