202 resultados para external cavity semiconductor laser
Resumo:
We study experimentally the dynamics of quantum-dot (QD) passively mode-locked semiconductor lasers under external optical injection. The lasers demonstrated multiple dynamical states, with bifurcation boundaries that depended upon the sign of detuning variation. The area of the hysteresis loops grew monotonically at small powers of optical injection and saturated at moderate powers. At high injection levels the hysteresis decreased and eventually disappeared.
Resumo:
Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1–3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4–6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3–1.5 mm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11–16. Here, we engineer a nanotube–polycarbonate film with a wide bandwidth (>300 nm) around 1.55 mm, and then use it to demonstrate a 2.4 ps Er31-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.
Resumo:
A technique for direct real-time assessment of a distributed feedback fibre laser cavity conditions during operation is demonstrated and used to provide a cavity mode conditioning feedback mechanism to optimise output performance. Negligible wavelength drift is demonstrated over a 52 mW pump power range.
Resumo:
We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.
Resumo:
A microchannel was inscribed in the fiber of a ring cavity which was constructed using two 0.1%:99.9% couplers and a 10-m fiber loop. Cavity ring down spectroscopy was used to measure the refractive index (RI) of gels infused into the microchannel. The ring down time discloses a nonlinear increase with respect to RI of the gel and sensitivity up to 300 µs/RI unit and an index resolution of 1.4 × 10 was obtained. © 2009 IEEE.
Resumo:
In this letter, we demonstrate an optically pumped semiconductor disk laser frequency doubled with a periodically poled lithium tantalate crystal. Crystals with various lengths were tested for intracavity frequency conversion. The semiconductor disk laser exploited GaInNAs-based active region with GaAsAlAs distributed Bragg mirror to produce emission at 1.2- μm wavelength. The frequency doubled power up to 760 mW at the wavelength of 610 nm was achieved with a 2-mm-long crystal. © 2010 IEEE.
Resumo:
We study experimentally the dynamics of quantum-dot (QD) passively mode-locked semiconductor lasers under external optical injection. The lasers demonstrated multiple dynamical states, with bifurcation boundaries that depended upon the sign of detuning variation. The area of the hysteresis loops grew monotonically at small powers of optical injection and saturated at moderate powers. At high injection levels the hysteresis decreased and eventually disappeared.
Resumo:
A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μ J with a pulse width of 1.68 μ s and signal-to-noise ratio (SNR) of ∼50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μ m. To the best of our knowledge, this is the first 3 μ m region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 Astro Ltd.
Resumo:
We have experimentally demonstrated an active loading sensor system based on a fiber ring laser with single-polarization output using an intra-cavity 45°-tilted fiber grating (45°-TFG). When the laser cavity fiber subjected to loading, the laser output is encoded with the load and can be measured and monitored by a power metre. A loading sensitivity as high as 0.033/ (kg·m-1) has been achieved using this laser. The experiment results clearly show that single polarization fiber laser may be developed to a low-cost high-sensitivity loading sensor system. © 2014 SPIE.
Resumo:
We have proposed and demonstrated a fibre laser system using a microchannel as a cavity loss tuning element for surrounding medium refractive index (SRI) sensing. A ~6µm width microchannel was created by femtosecond (fs) laser inscription assisted chemical etching in the cavity fibre, which offers a direct access to the external liquids. When the SRI changes, the microchannel behaves as a loss tuning element, hence modulating the laser cavity loss and output power. The results indicate that the presented laser sensing system has a linear response to the SRI with a sensitivity in the order of 10-5. Using higher pump power and more sensitive photodetector, the SRI sensitivity could be further enhanced.
Resumo:
Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas.
Resumo:
A diode-cladding-pumped mid-infrared passively Q-switched Ho 3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 SPIE.
Resumo:
we demonstrate a polarization switchable, single/ multi-wavelength fiber ring laser based on an intra-cavity all fiber Lyot filter. The laser can operate at single-, multi-wavelength by adjusting polarization controller, and givessingle polarization output. © 2015 OSA.
Resumo:
We report on the record-high pulse energy of nearly 1.7 μJ obtained directly from a self-mode-locked all-fiber erbium laser with a linear-ring cavity owing its extreme elongation up to several kilometers. Specially selected telecommunication fibers, providing large normal net cavity dispersion in the vicinity of 1.55 μm, have been used for this purpose. Along with compensation for polarization instability in the longer linear arm of the cavity, such approach has ensured stable wavebreaking- free mode-locked lasing with an ultra-low pulse repetition rate of 35.1 kHz. © 2010 by Astro Ltd.