101 resultados para cingulate gyrus
Resumo:
To determine the factors influencing the distribution of -amyloid (Abeta) deposits in Alzheimer's disease (AD), the spatial patterns of the diffuse, primitive, and classic A deposits were studied from the superior temporal gyrus (STG) to sector CA4 of the hippocampus in six sporadic cases of the disease. In cortical gyri and in the CA sectors of the hippocampus, the Abeta deposits were distributed either in clusters 200-6400 microm in diameter that were regularly distributed parallel to the tissue boundary or in larger clusters greater than 6400 microm in diameter. In some regions, smaller clusters of Abeta deposits were aggregated into larger 'superclusters'. In many cortical gyri, the density of Abeta deposits was positively correlated with distance below the gyral crest. In the majority of regions, clusters of the diffuse, primitive, and classic deposits were not spatially correlated with each other. In two cases, double immunolabelled to reveal the Abeta deposits and blood vessels, the classic Abeta deposits were clustered around the larger diameter vessels. These results suggest a complex pattern of Abeta deposition in the temporal lobe in sporadic AD. A regular distribution of Abeta deposit clusters may reflect the degeneration of specific cortico-cortical and cortico-hippocampal pathways and the influence of the cerebral blood vessels. Large-scale clustering may reflect the aggregation of deposits in the depths of the sulci and the coalescence of smaller clusters.
Resumo:
In variant Creutzfeldt-Jakob disease (vCJD), a disease linked to bovine spongiform encephalopathy (BSE), florid-type prion protein (PrP(sc)) deposits are aggregated around the larger diameter (> 10 µm) cerebral microvessels. Clustering of PrP(sc) deposits around blood vessels may result from blood-borne prions or be a consequence of the cerebral vasculature influencing the development of the florid deposits. To clarify the factors involved, the dispersion of the florid PrP(sc) deposits was studied around the larger diameter microvessels in the neocortex, hippocampus, and cerebellum of ten cases of vCJD. In the majority of brain regions, florid deposits were clustered around the larger diameter vessels with a mean cluster size of between 50 µm and 628 µm. With the exception of the molecular layer of the dentate gyrus, the density of the florid deposits declined as a negative exponential function of distance from a blood vessel profile suggesting that diffusion of molecules from blood vessels is a factor in the formation of the florid deposits. Diffusion of PrP(sc) directly into the brain via the microvasculature has been demonstrated in vCJD in a small number of cases. However, the distribution of the prion deposits in vCJD is more likely to reflect molecular 'chaperones' diffusing from vessels and promoting the aggregation of pre-existing PrP(sc) in the vicinity of the vessels to form florid deposits.
Resumo:
Objective: To quantify cortical white matter pathology in variant Creutzfeldt-Jakob disease (vCJD) and to correlate white and grey matter pathologies. Methods: Pathological changes were studied in immunolabeled sections of the frontal, parietal, occipital, and temporal cortex of eleven cases of vCJD. Results: Vacuolation ("spongiform change"), deposition of the disease form of prion protein (PrPsc), and a glial cell reaction were observed in the white matter. The density of the vacuoles was greatest in the white matter of the occipital cortex and glial cell density in the inferior temporal gyrus (ITG). Florid-type PrPsc deposits were present in approximately 50% of white matter regions studied. In the white matter of the frontal cortex (FC), vacuole density was negatively correlated with the densities of both glial cell nuclei and PrPsc deposits. In addition, in the frontal and parietal cortices the densities of glial cells and PrPsc deposits were positively correlated. In the FC and ITG, there was a negative correlation between the densities of the vacuoles in the white matter and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In the FC, vacuole density in the white matter was negatively correlated with the density of the diffuse PrPsc deposits in laminae II/III and V/VI of the adjacent grey matter. In addition, the densities of PrPsc deposits in the white matter of the FC were positively correlated with the density of the diffuse PrPsc deposits in laminae II/III and V/VI and with the number of surviving neurons in laminae V/VI. Conclusion: The data suggest significant degeneration of cortical white matter in vCJD; the vacuolation being related to neuronal loss in the lower cortical laminae of adjacent grey matter, PrPsc deposits the result of leakage from damaged axons, and gliosis a reaction to these changes.
Resumo:
Mutations of the progranulin (GRN) gene are a major cause of familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). We studied the spatial patterns of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI) and neuronal intranuclear inclusions (NII) in histological sections of the frontal and temporal lobe in eight cases of FTLD-TDP with GRN mutation using morphometric methods and spatial pattern analysis. In neocortical regions, the NCI were clustered and the clusters were regularly distributed parallel to the pia mater; 58% of regions analysed exhibiting this pattern. The NII were present in regularly distributed clusters in 35% of regions but also randomly distributed in many areas. In neocortical regions, the sizes of the regular clusters of NCI and NII were 400-800 µm, approximating to the size of the modular columns of the cortico-cortical projections, in 31% and 36% of regions respectively. The NCI and NII also exhibited regularly spaced clustering in sectors CA1/2 of the hippocampus and in the dentate gyrus. The clusters of NCI and NII were not spatially correlated. The data suggest degeneration of the cortico-cortical and cortico-hippocampal pathways in FTLD-TDP with GRN mutation, the NCI and NII affecting different clusters of neurons.
Resumo:
The recognition of faces and of facial expressions in an important evolutionary skill, and an integral part of social communication. It has been argued that the processing of faces is distinct from the processing of non-face stimuli and functional neuroimaging investigations have even found evidence of a distinction between the perception of faces and of emotional expressions. Structural and temporal correlates of face perception and facial affect have only been separately identified. Investigation neural dynamics of face perception per se as well as facial affect would allow the mapping of these in space, time and frequency specific domains. Participants were asked to perform face categorisation and emotional discrimination tasks and Magnetoencephalography (MEG) was used to measure the neurophysiology of face and facial emotion processing. SAM analysis techniques enable the investigation of spectral changes within specific time-windows and frequency bands, thus allowing the identification of stimulus specific regions of cortical power changes. Furthermore, MEG’s excellent temporal resolution allows for the detection of subtle changes associated with the processing of face and non-face stimuli and different emotional expressions. The data presented reveal that face perception is associated with spectral power changes within a distributed cortical network comprising occipito-temporal as well as parietal and frontal areas. For the perception of facial affect, spectral power changes were also observed within frontal and limbic areas including the parahippocampal gyrus and the amygdala. Analyses of temporal correlates also reveal a distinction between the processing of faces and facial affect. Face perception per se occurred at earlier latencies whereas the discrimination of facial expression occurred within a longer time-window. In addition, the processing of faces and facial affect was differentially associated with changes in cortical oscillatory power for alpha, beta and gamma frequencies. The perception of faces and facial affect is associated with distinct changes in cortical oscillatory activity that can be mapped to specific neural structures, specific time-windows and latencies as well as specific frequency bands. Therefore, the work presented in this thesis provides further insight into the sequential processing of faces and facial affect.
Resumo:
The 19 channel Neuromagnetometer system in the Clinical Neurophysiology Unit at Aston University is a multi-channel system, unique in the United Kingdom. A bite bar head localisation and MRI co-registration strategy which enabled accurate and reproducible localisation of MEG data into cortical space was developed. This afforded the opportunity to study magnetic fields of the human cortex generated by stimulation of peripheral nerve, by stimulation of visceral sensory receptors and by those evoked through voluntary finger movement. Initially, a study of sensory-motor evoked data was performed in a healthy control population. The techniques developed were then applied to patients who were to undergo neurosurgical intervention for the treatment of epilepsy and I or space occupying lesions. This enabled both validation of the effective accuracy of source localisation using MEG as well as to determine the clinical value of MEG in presurgical assessment of functional localisation in human cortex. The studies in this thesis have demonstrated that MEG can repeatedly and reliably locate sources contained within a single gyrus and thus potentially differentiate between disparate gyral activation. This ability is critical in the clinical application of any functional imaging technique; which is yet to be fully validated by any other 'non-invasive' functional imaging methodology. The technique was also applied to the study of visceral sensory representation in the cortex which yielded important data about the multiple cortical representation of visceral sensory function.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of familial amyotrophic lateral sclerosis with FUS mutation, NIFID, basophilic inclusion body disease, and atypical FTLD with ubiquitin-immunoreactive inclusions (aFTLD-U). To further characterize FUS proteinopathy in NIFID, and to determine whether the pathology revealed by FUS immunohistochemistry (IHC) is more extensive than a-internexin, we have undertaken a quantitative assessment of ten clinically and neuropathologically well-characterized cases using FUS IHC. The densities of NCI were greatest in the dentate gyrus (DG) and in sectors CA1/2 of the hippocampus. Anti-FUS antibodies also labeled glial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN). Vacuolation was extensive across upper and lower cortical layers. Significantly greater densities of abnormally enlarged neurons and glial cell nuclei were present in the lower compared with the upper cortical laminae. FUS IHC revealed significantly greater numbers of NCI in all brain regions especially the DG. Our data suggest: (1) significant densities of FUS-immunoreactive NCI in NIFID especially in the DG and CA1/2; (2) infrequent FUS-immunoreactive GI, NII, and DN; (3) widely distributed vacuolation across the cortex, and (4) significantly more NCI revealed by FUS than a-internexin IHC.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament (IF) proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of NIFID. To further characterize FUS proteinopathy in NIFID, we studied the spatial patterns of the FUS-immunoreactive NCI in frontal and temporal cortex of 10 cases. In the cerebral cortex, sectors CA1/2 of the hippocampus, and the dentate gyrus (DG), the FUS-immunoreactive NCI were frequently clustered and the clusters were regularly distributed parallel to the tissue boundary. In a proportion of cortical gyri, cluster size of the NCI approximated to those of the columns of cells was associated with the cortico-cortical projections. There were no significant differences in the frequency of different types of spatial patterns with disease duration or disease stage. Clusters of NCI in the upper and lower cortex were significantly larger using FUS compared with phosphorylated, neurofilament heavy polypeptide (NEFH) or a-internexin (INA) immunohistochemistry (IHC). We concluded: (1) FUS-immunoreactive NCI exhibit similar spatial patterns to analogous inclusions in the tauopathies and synucleinopathies, (2) clusters of FUS-immunoreactive NCI are larger than those revealed by NEFH or ???, and (3) the spatial patterns of the FUS-immunoreactive NCI suggest the degeneration of the cortico-cortical projections in NIFID.
Resumo:
We report two functional magnetic resonance imaging (fMRI) experiments which reveal a cortical network activated when perceiving coloured grids, and experiencing the McCollough effect (ME). Our results show that perception of red-black and green-black grids activate the right fusiform gyrus (area V4) plus the left and right lingual gyri, right striate cortex (V1) and left insula. The ME activated the left anterior fusiform gyrus as well as the ventrolateral prefrontal cortex, and in common with colour perception, the left insula. These data confirm the critical role of the fusiform gyrus in actual and illusory colour perception as well as revealing localized frontal cortical activation associated with the ME, which would suggest that a 'top-down' mechanism is implicated in this illusion.
Resumo:
Neuroimaging studies of cortical activation during image transformation tasks have shown that mental rotation may rely on similar brain regions as those underlying visual perceptual mechanisms. The V5 complex, which is specialised for visual motion, is one region that has been implicated. We used functional magnetic resonance imaging (fMRI) to investigate rotational and linear transformation of stimuli. Areas of significant brain activation were identified for each of the primary mental transformation tasks in contrast to its own perceptual reference task which was cognitively matched in all respects except for the variable of interest. Analysis of group data for perception of rotational and linear motion showed activation in areas corresponding to V5 as defined in earlier studies. Both rotational and linear mental transformations activated Brodman Area (BA) 19 but did not activate V5. An area within the inferior temporal gyrus, representing an inferior satellite area of V5, was activated by both the rotational perception and rotational transformation tasks, but showed no activation in response to linear motion perception or transformation. The findings demonstrate the extent to which neural substrates for image transformation and perception overlap and are distinct as well as revealing functional specialisation within perception and transformation processing systems.
Resumo:
News & Comment. Many influential models of prefrontal cortex function suggest that activity within this area is often associated with additional activity in posterior regions of the cortex that support perception. The purpose of this cortical ‘coupling’ is to ensure that a perceptual representation is generated and then maintained within the working memory system. Areas in the right ventrolateral prefrontal cortex (vlPFC) and the fusiform gyrus have been implicated as associate areas involved in face processing. In an interesting case study by Vignal, Chauvel and Halgren the functional relationship between these two areas was tested1. In order to confirm the epileptogenic foci prior to resective surgery in a 30-year-old male patient, depth electrodes were implanted into sites around prefrontal, anterior temporal and premotor cortices. While the patient was looking at a blank screen, 50-Hz electrical stimulation of two probes implanted into the right anterior frontal gyrus resulted in the patient’s reporting the perception of a series of colourful faces. These facial hallucinations were described as being ‘…like passing slides, one after the after, linked together’. When asked to look at an actual face during stimulation at the same sites the patient reported transformation of that face (such as appearing without spectacles or with a hat). These findings were related to activity of a cortical network involving the vlPFC and the fusiform gyrus. This paper thus suggests a role in face processing for the vlPFC, evoking working memory processes to maintain facial representations.
Resumo:
Corticobasal degeneration (CBD) is a rare, progressive movement disorder characterized neuropathologically by widespread neuronal and glial pathology including tau-immunoreactive neuronal cytoplasmic inclusions (NCI), oligodendroglial inclusions (GI), and astrocytic plaques (AP). However, ß -amyloid (A ß) deposits have been observed in the cerebral cortex and/or hippocampus in some cases of CBD. To clarify the role of Aß deposition in CBD, the densities and spatial patterns of the Aß deposits were studied in three cases. In two cases, expressing apolipoprotein E (APOE) genotypes 2/3 or 3/3, the densities of the Aß deposits were similar to those in normal elderly brain. In the remaining case, expressing APOE genotype 3/4, Aß deposition was observed throughout the cerebral cortex, sectors CA1 and CA2 of the hippocampus, and the molecular layer of the dentate gyrus. The densities of the Aß deposits in this case were typical of those observed in Alzheimer's disease (AD). In the three cases, clustering of Aß deposits, with clusters ranging in size from 200 to >6400 µm in diameter, was evident in 25/27 (93%) of analyses. In addition, the clusters of Aß deposits were regularly distributed parallel to the tissue boundary in 52% of analyses, a spatial pattern similar to that observed in AD. These results suggest: (1) in some CBD cases, Aß pathology is age-related, (2) more extensive Aß deposition is observed in some cases, the density and spatial patterns of the Aß deposits being similar to AD, and (3) extensive deposition of Aß in CBD may be associated with APOE allele e4.
Resumo:
A proportion of patients with motor neuron disease (MND) exhibit frontotemporal dementia (FTD) and some patients with FTD develop the clinical features of MND. Frontotemporal lobar degeneration (FTLD) is the pathological substrate of FTD and some forms of this disease (referred to as FTLD-U) share with MND the common feature of ubiquitin-immunoreactive, tau-negative cellular inclusions in the cerebral cortex and hippocampus. Recently, the transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) has been found to be a major protein of the inclusions of FTLD-U with or without MND and these cases are referred to as FTLD with TDP-43 proteinopathy (FTLD-TDP). To clarify the relationship between MND and FTLD-TDP, TDP-43 pathology was studied in nine cases of FTLD-MND and compared with cases of familial and sporadic FTLD–TDP without associated MND. A principal components analysis (PCA) of the nine FTLD-MND cases suggested that variations in the density of surviving neurons in the frontal cortex and neuronal cytoplasmic inclusions (NCI) in the dentate gyrus (DG) were the major histological differences between cases. The density of surviving neurons in FTLD-MND was significantly less than in FTLD-TDP cases without MND, and there were greater densities of NCI but fewer neuronal intranuclear inclusions (NII) in some brain regions in FTLD-MND. A PCA of all FTLD-TDP cases, based on TDP-43 pathology alone, suggested that neuropathological heterogeneity was essentially continuously distributed. The FTLD-MND cases exhibited consistently high loadings on PC2 and overlapped with subtypes 2 and 3 of FTLD-TDP. The data suggest: (1) FTLD-MND cases have a consistent pathology, variations in the density of NCI in the DG being the major TDP-43-immunoreactive difference between cases, (2) there are considerable similarities in the neuropathology of FTLD-TDP with and without MND, but with greater neuronal loss in FTLD-MND, and (3) FTLD-MND cases are part of the FTLD-TDP ‘continuum’ overlapping with FTLD-TDP disease subtypes 2 and 3.
Resumo:
Adults show great variation in their auditory skills, such as being able to discriminate between foreign speech-sounds. Previous research has demonstrated that structural features of auditory cortex can predict auditory abilities; here we are interested in the maturation of 2-Hz frequency-modulation (FM) detection, a task thought to tap into mechanisms underlying language abilities. We hypothesized that an individual's FM threshold will correlate with gray-matter density in left Heschl's gyrus, and that this function-structure relationship will change through adolescence. To test this hypothesis, we collected anatomical magnetic resonance imaging data from participants who were tested and scanned at three time points: at 10, 11.5 and 13 years of age. Participants judged which of two tones contained FM; the modulation depth was adjusted using an adaptive staircase procedure and their threshold was calculated based on the geometric mean of the last eight reversals. Using voxel-based morphometry, we found that FM threshold was significantly correlated with gray-matter density in left Heschl's gyrus at the age of 10 years, but that this correlation weakened with age. While there were no differences between girls and boys at Times 1 and 2, at Time 3 there was a relationship between gray-matter density in left Heschl's gyrus in boys but not in girls. Taken together, our results confirm that the structure of the auditory cortex can predict temporal processing abilities, namely that gray-matter density in left Heschl's gyrus can predict 2-Hz FM detection threshold. This ability is dependent on the processing of sounds changing over time, a skill believed necessary for speech processing. We tested this assumption and found that FM threshold significantly correlated with spelling abilities at Time 1, but that this correlation was found only in boys. This correlation decreased at Time 2, and at Time 3 we found a significant correlation between reading and FM threshold, but again, only in boys. We examined the sex differences in both the imaging and behavioral data taking into account pubertal stages, and found that the correlation between FM threshold and spelling was strongest pre-pubertally, and the correlation between FM threshold and gray-matter density in left Heschl's gyrus was strongest mid-pubertally.
Resumo:
Self-criticism is strongly correlated with a range of psychopathologies, such as depression, eating disorders and anxiety. In contrast, self-reassurance is inversely associated with such psychopathologies. Despite the importance of self-judgements and evaluations, little is known about the neurophysiology of these internal processes. The current study therefore used a novel fMRI task to investigate the neuronal correlates of self-criticism and self-reassurance. Participants were presented statements describing two types of scenario, with the instruction to either imagine being self-critical or self-reassuring in that situation. One scenario type focused on a personal setback, mistake or failure, which would elicit negative emotions, whilst the second was of a matched neutral event. Self-criticism was associated with activity in lateral prefrontal cortex (PFC) regions and dorsal anterior cingulate (dAC), therefore linking self-critical thinking to error processing and resolution, and also behavioural inhibition. Self-reassurance was associated with left temporal pole and insula activation, suggesting that efforts to be self-reassuring engage similar regions to expressing compassion and empathy towards others. Additionally, we found a dorsal/ventral PFC divide between an individual's tendency to be self-critical or self-reassuring. Using multiple regression analyses, dorsolateral PFC activity was positively correlated with high levels of self-criticism (assessed via self-report measure), suggesting greater error processing and behavioural inhibition in such individuals. Ventrolateral PFC activity was positively correlated with high self-reassurance. Our findings may have implications for the neural basis of a range of mood disorders that are characterised by a preoccupation with personal mistakes and failures, and a self-critical response to such events.