128 resultados para all dielectric pulse compressor gratings


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, we numerically demonstrate that the use of inline nonlinear optical loop mirrors in strongly dispersion-managed transmission systems dominated by pulse distortion and amplitude noise can achieve all-optical passive 2R regeneration of a 40-Gb/s return-to-zero data stream. We define the tolerance limits of this result to the parameters of the input pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have proposed a new technique of all-optical nonlinear pulse processing for use at a RZ optical receiver, which is based on an AM or any device with a similar function of temporal gating/slicing enhanced by the effect of Kerr nonlinearity in a NDF. The efficiency of the technique has been demonstrated by application to timing jitter and noise-limited RZ transmission at 40 Gbit/s. Substantial suppression of the signal timing jitter and overall improvement of the receiver performance has been demonstrated using the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report an all-fiber mode-locked erbium-doped fiber laser (EDFL) employing carbon nanotube (CNT) polymer composite film. By using only standard telecom grade components, without any complex polarization control elements in the laser cavity, we have demonstrated polarization locked vector solitons generation with duration of ~583fs , average power of ~3 mW (pulse energy of 118pJ ) at the repetition rate of ~25.7 MHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long period gratings have been inscribed in standard single mode fibre using a fs laser system, a fusion arc and a UV laser and a comparative study carried out of their thermal behaviour. The fs laser induced gratings can survive temperatures in excess of 800°C, however the inscription process can induce considerable birefringence within the device. Annealing studies have been carried out showing that below 600°C, all three grating types show a blue shift in their room temperature resonance wavelengths following cyclic heating, while above 600°C, the UV and arc induced LPGs exhibit a red shift, with the fs LPG showing an even stronger blue shift. High temperature annealing is also shown to considerably reduce the birefringence induced by the fs inscription process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Screening for congenital heart defects (CHDs) relies on antenatal ultrasound and postnatal clinical examination; however, life-threatening defects often go undetected. Objective: To determine the accuracy, acceptability and cost-effectiveness of pulse oximetry as a screening test for CHDs in newborn infants. Design: A test accuracy study determined the accuracy of pulse oximetry. Acceptability of testing to parents was evaluated through a questionnaire, and to staff through focus groups. A decision-analytic model was constructed to assess cost-effectiveness. Setting: Six UK maternity units. Participants: These were 20,055 asymptomatic newborns at = 35 weeks’ gestation, their mothers and health-care staff. Interventions: Pulse oximetry was performed prior to discharge from hospital and the results of this index test were compared with a composite reference standard (echocardiography, clinical follow-up and follow-up through interrogation of clinical databases). Main outcome measures: Detection of major CHDs – defined as causing death or requiring invasive intervention up to 12 months of age (subdivided into critical CHDs causing death or intervention before 28 days, and serious CHDs causing death or intervention between 1 and 12 months of age); acceptability of testing to parents and staff; and the cost-effectiveness in terms of cost per timely diagnosis. Results: Fifty-three of the 20,055 babies screened had a major CHD (24 critical and 29 serious), a prevalence of 2.6 per 1000 live births. Pulse oximetry had a sensitivity of 75.0% [95% confidence interval (CI) 53.3% to 90.2%] for critical cases and 49.1% (95% CI 35.1% to 63.2%) for all major CHDs. When 23 cases were excluded, in which a CHD was already suspected following antenatal ultrasound, pulse oximetry had a sensitivity of 58.3% (95% CI 27.7% to 84.8%) for critical cases (12 babies) and 28.6% (95% CI 14.6% to 46.3%) for all major CHDs (35 babies). False-positive (FP) results occurred in 1 in 119 babies (0.84%) without major CHDs (specificity 99.2%, 95% CI 99.0% to 99.3%). However, of the 169 FPs, there were six cases of significant but not major CHDs and 40 cases of respiratory or infective illness requiring medical intervention. The prevalence of major CHDs in babies with normal pulse oximetry was 1.4 (95% CI 0.9 to 2.0) per 1000 live births, as 27 babies with major CHDs (6 critical and 21 serious) were missed. Parent and staff participants were predominantly satisfied with screening, perceiving it as an important test to detect ill babies. There was no evidence that mothers given FP results were more anxious after participating than those given true-negative results, although they were less satisfied with the test. White British/Irish mothers were more likely to participate in the study, and were less anxious and more satisfied than those of other ethnicities. The incremental cost-effectiveness ratio of pulse oximetry plus clinical examination compared with examination alone is approximately £24,900 per timely diagnosis in a population in which antenatal screening for CHDs already exists. Conclusions: Pulse oximetry is a simple, safe, feasible test that is acceptable to parents and staff and adds value to existing screening. It is likely to identify cases of critical CHDs that would otherwise go undetected. It is also likely to be cost-effective given current acceptable thresholds. The detection of other pathologies, such as significant CHDs and respiratory and infective illnesses, is an additional advantage. Other pulse oximetry techniques, such as perfusion index, may enhance detection of aortic obstructive lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate an all-fiber-integrated Er-doped fiber laser operating in the soliton-similariton mode-locking regime. In the similariton part of the cavity, a self-similarly evolving parabolic pulse with highly linear chirp propagates in the presence of normal dispersion. Following an in-line fiber-based birefringent filter, the pulse evolves into a soliton in the part of the cavity with anomalous dispersion. The similariton and the soliton pulses are dechirped to 75.5 and 167.2 fs, respectively, outside of the cavity. Mode-locked operation is very robust, owing to the influence of the two similariton and soliton attractors that predominate each half of the laser cavity. The experimental results are supported with numerical simulations, which provide good agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the generation of 42 fs pulses at 1 µm in a completely fiber-integrated format, which are, to the best of our knowledge, the shortest from all-fiber-integrated Yb-doped fiber lasers to date. The ring fiber cavity incorporates anomalous-dispersion, solid-core photonic crystal fiber with low birefringence, which acts as a broadband, in-fiber Lyot filter to facilitate mode locking. The oscillator operates in the stretched-pulse regime under slight normal net cavity dispersion. The cavity generates 4.7 ps long pulses with a spectral bandwidth of 58.2 nm, which are dechirped to 42 fs via a grating pair compressor outside of the cavity. Relative intensity noise (RIN) of the laser is characterized, with the integrated RIN found to be 0.026% in the 3 Hz-250 kHz frequency range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a simple lossless method for the generation of flat-topped intensity pulses bursts from a single utrashort pulse. We have found optimum solutions corresponding to different numbers of cavities and burst pulses, showing that the proposed all-pass structures of optical cavities, properly designed, can generate close to flat-topped pulse busts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and analyze several simple all-pass spectrally-periodic optical structures, in terms of accuracy and robustness, for the implementation of repetition rate multipliers of periodic pulse train with uniform output train envelope, finding optimum solutions for multiplication factors of 3, 4, 6, and 12.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel all-optical time domain regeneration technique using nonlinear pulse broadening and flattening in normal dispersion fiber and subsequent temporal slicing by an amplitude modulator (or a device performing a similar function) is proposed. Substantial suppression of the timing jitter of jitter-degraded optical signals is demonstrated using the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new all-optical signal processing technique to enhance the performance of a return-to-zero optical receiver, which is based on nonlinear temporal pulse broadening and flattening in a normal dispersion fiber and subsequent slicing of the pulse temporal waveform. The potential of the method is demonstrated by application to timing jitter-and noise-limited transmission at 40 Gbit/s. © 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel all-optical time domain regeneration technique using nonlinear pulse broadening and flattening in normal dispersion fiber and subsequent temporal slicing by an amplitude modulator (or a device performing a similar function) is proposed. Substantial suppression of the timing jitter of jitter-degraded optical signals is demonstrated using the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new type of fiber Bragg grating (FBG) with a V-shaped dispersion profile. We demonstrate that such V-shaped FBGs bring advantages in manipulation of optical signals compared to conventional FBGs with a constant dispersion, e.g., they can produce larger chirp for the same input pulsewidth and/or can be used as pulse shapers. Application of the proposed V-shaped FBGs for signal prechirping in fiber transmission is examined. The proposed design of the V-shaped FBG can be easily extended to embrace multichannel devices. © 2007 IEEE.