74 resultados para Visual perception in infants
Resumo:
Visual perception is dependent on both light transmission through the eye and neuronal conduction through the visual pathway. Advances in clinical diagnostics and treatment modalities over recent years have increased the opportunities to improve the optical path and retinal image quality. Higher order aberrations and retinal straylight are two major factors that influence light transmission through the eye and ultimately, visual outcome. Recent technological advancements have brought these important factors into the clinical domain, however the potential applications of these tools and considerations regarding interpretation of data are much underestimated. The purpose of this thesis was to validate and optimise wavefront analysers and a new clinical tool for the objective evaluation of intraocular scatter. The application of these methods in a clinical setting involving a range of conditions was also explored. The work was divided into two principal sections: 1. Wavefront Aberrometry: optimisation, validation and clinical application The main findings of this work were: • Observer manipulation of the aberrometer increases variability by a factor of 3. • Ocular misalignment can profoundly affect reliability, notably for off-axis aberrations. • Aberrations measured with wavefront analysers using different principles are not interchangeable, with poor relationships and significant differences between values. • Instrument myopia of around 0.30D is induced when performing wavefront analysis in non-cyclopleged eyes; values can be as high as 3D, being higher as the baseline level of myopia decreases. Associated accommodation changes may result in relevant changes to the aberration profile, particularly with respect to spherical aberration. • Young adult healthy Caucasian eyes have significantly more spherical aberration than Asian eyes when matched for age, gender, axial length and refractive error. Axial length is significantly correlated with most components of the aberration profile. 2. Intraocular light scatter: Evaluation of subjective measures and validation and application of a new objective method utilising clinically derived wavefront patterns. The main findings of this work were: • Subjective measures of clinical straylight are highly repeatable. Three measurements are suggested as the optimum number for increased reliability. • Significant differences in straylight values were found for contact lenses designed for contrast enhancement compared to clear lenses of the same design and material specifications. Specifically, grey/green tints induced significantly higher values of retinal straylight. • Wavefront patterns from a commercial Hartmann-Shack device can be used to obtain objective measures of scatter and are well correlated with subjective straylight values. • Perceived retinal stray light was similar in groups of patients implanted with monofocal and multi focal intraocular lenses. Correlation between objective and subjective measurements of scatter is poor, possibly due to different illumination conditions between the testing procedures, or a neural component which may alter with age. Careful acquisition results in highly reproducible in vivo measures of higher order aberrations; however, data from different devices are not interchangeable which brings the accuracy of measurement into question. Objective measures of intraocular straylight can be derived from clinical aberrometry and may be of great diagnostic and management importance in the future.
Resumo:
Background - An evaluation of standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP) for the central 10–2 visual field test procedure in patients with age-related macular degeneration (AMD) is presented in order to determine methods of quantifying the central sensitivity loss in patients at various stages of AMD. Methods - 10–2 SAP and SWAP Humphrey visual fields and stereoscopic fundus photographs were collected in 27 eyes of 27 patients with AMD and 22 eyes of 22 normal subjects. Results - Mean Deviation and Pattern Standard Deviation (PSD) varied significantly with stage of disease in SAP (both p<0.001) and SWAP (both p<0.001), but post hoc analysis revealed overlap of functional values among stages. In SWAP, indices of focal loss were more sensitive to detecting differences in AMD from normal. SWAP defects were greater in depth and area than those in SAP. Central sensitivity (within 1°) changed by -3.9 and -4.9 dB per stage in SAP and SWAP, respectively. Based on defect maps, an AMD Severity Index was derived. Conclusions - Global indices of focal loss were more sensitive to detecting early stage AMD from normal. The SWAP sensitivity decline with advancing stage of AMD was greater than in SAP. A new AMD Severity Index quantifies visual field defects on a continuous scale. Although not all patients are suitable for SWAP examinations, it is of value as a tool in research studies of visual loss in AMD.
Resumo:
Presentation Purpose:To determine methods of quantifying the sensitivity loss in the central 10o visual field in a cross section of patients at various stages of age-related macular degeneration (AMD). Methods:Standard and short-wavelength automated perimetry (SAP and SWAP) visual fields were collected using program 10-2 of the Humphrey Field Analyzer, in 44 eyes of 27 patients with AMD and 41 eyes of 22 normal subjects. Stereoscopic fundus photographs were graded by two independent observers and the stage of disease determined. Global indices were compared for their ability to delineate the normal visual field from early stages of AMD and to differentiate between stages. Results:Mean Deviation (MD) and Pattern Standard Deviation (PSD) varied significantly with stage of disease in SAP (both p<0.001) and SWAP (both p<0.001), but post-hoc analysis revealed overlap of functional values between stages. Global indices of focal loss, PSD and local spatial variability (LSV) were the most sensitive to detecting differences between normal subjects and early stage AMD patients, in SAP and SWAP, respectively. Overall, defects were confined to the central 5°. SWAP defects were consistently greater in depth and area than those in SAP. The most vulnerable region of the 10° field to sensitivity loss with increasing stage of AMD was the central 1°, in which the sensitivity decline was -4.8dB per stage in SAP and -4.9dB per stage in SWAP. Based on the pattern deviation defect maps, a severity index of AMD visual field loss was derived. Threshold variability was considerably increased in late stage AMD eyes. Conclusions:Global indices of focal loss were more sensitive to the detection of early stage AMD from normal. The sensitivity decline with advancing stage of AMD was greater in SWAP compared to SAP, however the trend was not strong across all stages of disease. The less commonly used index LSV represents relatively statistically unmanipulated summary measure of focal loss. A new severity index is described which is sensitive to visual field change in AMD, measures visual field defects on a continuous scale and may serve as a useful measure of functional change in AMD in longitudinal studies. Keywords: visual fields • age-related macular degeneration • perimetry
Resumo:
Dementia with Lewy bodies ('Lewy body dementia' or 'diffuse Lewy body disease') (DLB) is the second most common form of dementia to affect elderly people, after Alzheimer's disease. A combination of the clinical symptoms of Alzheimer's disease and Parkinson's disease is present in DLB and the disorder is classified as a 'parkinsonian syndrome', a group of diseases which also includes Parkinson's disease, progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. Characteristics of DLB are fluctuating cognitive ability with pronounced variations in attention and alertness, recurrent visual hallucinations and spontaneous motor features, including akinesia, rigidity and tremor. In addition, DLB patients may exhibit visual signs and symptoms, including defects in eye movement, pupillary function and complex visual functions. Visual symptoms may aid the differential diagnoses of parkinsonian syndromes. Hence, the presence of visual hallucinations supports a diagnosis of Parkinson's disease or DLB rather than progressive supranuclear palsy. DLB and Parkinson's disease may exhibit similar impairments on a variety of saccadic and visual perception tasks (visual discrimination, space-motion and object-form recognition). Nevertheless, deficits in orientation, trail-making and reading the names of colours are often significantly greater in DLB than in Parkinson's disease. As primary eye-care practitioners, optometrists should be able to work with patients with DLB and their carers to manage their visual welfare.
Resumo:
Minimal access procedures in surgery offer benefits of reduced patient recovery time and less pain, yet for the surgeon the task is more complex, as both tactile and visual perception of the working site is reduced. In this paper, experimental evidence of the performance of a novel sensing system embedded in an actuated flexible digit element is presented. The digit represents a steerable tip element of devices such as endoscopes and laparoscopes. This solution is able to discriminate types of contact and tissue interaction, and to feed back this information with the shape of the flexible digit. As an alternative to this information, force level, force distribution, and other quantifiable descriptors can also be evaluated. These can be used to aid perception in processes such as navigation and investigation of tissues through palpation. The solution is pragmatic, and by virtue of its efficient mechanical construction and a polymer construction, it offers opportunities for a disposable element with suitability for magnetic resonance imaging (MRI) and other scanning environments. By using only four photonics sensing elements, full perception of tissue contact and the shape of the actuated digit can be described in the feedback of this information. The distributive sensory method applied to the sensory signals relies on the coupled values of the sensory data transients of the four deployed sensing elements to discriminate tissue interaction directly in near real time.
Resumo:
The processing conducted by the visual system requires the combination of signals that are detected at different locations in the visual field. The processes by which these signals are combined are explored here using psychophysical experiments and computer modelling. Most of the work presented in this thesis is concerned with the summation of contrast over space at detection threshold. Previous investigations of this sort have been confounded by the inhomogeneity in contrast sensitivity across the visual field. Experiments performed in this thesis find that the decline in log contrast sensitivity with eccentricity is bilinear, with an initial steep fall-off followed by a shallower decline. This decline is scale-invariant for spatial frequencies of 0.7 to 4 c/deg. A detailed map of the inhomogeneity is developed, and applied to area summation experiments both by incorporating it into models of the visual system and by using it to compensate stimuli in order to factor out the effects of the inhomogeneity. The results of these area summation experiments show that the summation of contrast over area is spatially extensive (occurring over 33 stimulus carrier cycles), and that summation behaviour is the same in the fovea, parafovea, and periphery. Summation occurs according to a fourth-root summation rule, consistent with a “noisy energy” model. This work is extended to investigate the visual deficit in amblyopia, finding that area summation is normal in amblyopic observers. Finally, the methods used to study the summation of threshold contrast over area are adapted to investigate the integration of coherent orientation signals in a texture. The results of this study are described by a two-stage model, with a mandatory local combination stage followed by flexible global pooling of these local outputs. In each study, the results suggest a more extensive combination of signals in vision than has been previously understood.
Resumo:
Visual field assessment is a core component of glaucoma diagnosis and monitoring, and the Standard Automated Perimetry (SAP) test is considered up until this moment, the gold standard of visual field assessment. Although SAP is a subjective assessment and has many pitfalls, it is being constantly used in the diagnosis of visual field loss in glaucoma. Multifocal visual evoked potential (mfVEP) is a newly introduced method used for visual field assessment objectively. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study, we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. OBJECTIVES: The purpose of this study is to examine the effectiveness of a new analysis method in the Multi-Focal Visual Evoked Potential (mfVEP) when it is used for the objective assessment of the visual field in glaucoma patients, compared to the gold standard technique. METHODS: 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the 3 groups in the mean signal to noise ratio SNR (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). sensitivity and specificity of the HAS protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. DISCUSSION: The results showed that the new analysis protocol was able to confirm already existing field defects detected by standard HFA, was able to differentiate between the 3 study groups with a clear distinction between normal and patients with suspected glaucoma; however the distinction between normal and glaucoma patients was especially clear and significant. CONCLUSION: The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints. © Springer Science+Business Media New York 2013.
Resumo:
Minimal access procedures in surgery offer benefits of reduced patient recovery time and less pain, yet for the surgeon the task is more complex, as both tactile and visual perception of the working site is reduced. In this paper, experimental evidence of the performance of a novel sensing system embedded in an actuated flexible digit element is presented. The digit represents a steerable tip element of devices such as endoscopes and laparoscopes. This solution is able to discriminate types of contact and tissue interaction, and to feed back this information with the shape of the flexible digit. As an alternative to this information, force level, force distribution, and other quantifiable descriptors can also be evaluated. These can be used to aid perception in processes such as navigation and investigation of tissues through palpation. The solution is pragmatic, and by virtue of its efficient mechanical construction and a polymer construction, it offers opportunities for a disposable element with suitability for magnetic resonance imaging (MRI) and other scanning environments. By using only four photonics sensing elements, full perception of tissue contact and the shape of the actuated digit can be described in the feedback of this information. The distributive sensory method applied to the sensory signals relies on the coupled values of the sensory data transients of the four deployed sensing elements to discriminate tissue interaction directly in near real time.
Resumo:
In recent years there has been an increasing use of visual methods in ageing research. There are, however, limited reflections and critical explorations of the implications of using visual methods in research with people in mid to later life. This paper examines key methodological complexities when researching the daily lives of people as they grow older and the possibilities and limitations of using participant-generated visual diaries. The paper will draw on our experiences of an empirical study, which included a sample of 62 women and men aged 50 years and over with different daily routines. Participant-led photography was drawn upon as a means to create visual diaries, followed by in-depth, photo-elicitation interviews. The paper will critically reflect on the use of visual methods for researching the daily lives of people in mid to later life, as well as suggesting some wider tensions within visual methods that warrant attention. First, we explore the extent to which photography facilitates a ‘collaborative’ research process; second, complexities around capturing the ‘everydayness’ of daily routines are explored; third, the representation and presentation of ‘self’ by participants within their images and interview narratives is examined; and, finally, we highlight particular emotional considerations in visualising daily life.
Resumo:
In the visual perception literature, the recognition of faces has often been contrasted with that of non-face objects, in terms of differences with regard to the role of parts, part relations and holistic processing. However, recent evidence from developmental studies has begun to blur this sharp distinction. We review evidence for a protracted development of object recognition that is reminiscent of the well-documented slow maturation observed for faces. The prolonged development manifests itself in a retarded processing of metric part relations as opposed to that of individual parts and offers surprising parallels to developmental accounts of face recognition, even though the interpretation of the data is less clear with regard to holistic processing. We conclude that such results might indicate functional commonalities between the mechanisms underlying the recognition of faces and non-face objects, which are modulated by different task requirements in the two stimulus domains.
Resumo:
Our goal here is a more complete understanding of how information about luminance contrast is encoded and used by the binocular visual system. In two-interval forced-choice experiments we assessed observers' ability to discriminate changes in contrast that could be an increase or decrease of contrast in one or both eyes, or an increase in one eye coupled with a decrease in the other (termed IncDec). The base or pedestal contrasts were either in-phase or out-of-phase in the two eyes. The opposed changes in the IncDec condition did not cancel each other out, implying that along with binocular summation, information is also available from mechanisms that do not sum the two eyes' inputs. These might be monocular mechanisms. With a binocular pedestal, monocular increments of contrast were much easier to see than monocular decrements. These findings suggest that there are separate binocular (B) and monocular (L,R) channels, but only the largest of the three responses, max(L,B,R), is available to perception and decision. Results from contrast discrimination and contrast matching tasks were described very accurately by this model. Stimuli, data, and model responses can all be visualized in a common binocular contrast space, allowing a more direct comparison between models and data. Some results with out-of-phase pedestals were not accounted for by the max model of contrast coding, but were well explained by an extended model in which gratings of opposite polarity create the sensation of lustre. Observers can discriminate changes in lustre alongside changes in contrast.
Resumo:
Objective: Coping behaviour in adult hearing loss is still not well understood. Despite the high prevalence of hearing loss in those over 65, many people do not seek help for hearing loss. The common sense model of illness perceptions suggests that illness perceptions are a strong predictor of adapted coping behaviours, including help-seeking and take-up of treatments. This study aimed to determine the feasibility of using the brief illness perceptions questionnaire (bIPQ) to measure the impact of illness perception in predicting usage of NHS audiology services. Study design: Twenty-four volunteers were recruited from a standard NHS audiology outpatient clinic and illness perception was measured using the bIPQ. Two different recruitment strategies were explored and compared in terms of recruitment and retention rates. Comprehensibility of the questionnaire was assessed by Think Aloud Analysis in a subset of participants, while possible risks and burdens were monitored in structured telephone interviews. Results: The questionnaire is a comprehensive and quick tool to measure individual illness perception at minimal cost. We suggested minor adaptations of three questionnaire items to increase comprehension. Participants preferred to complete the questionnaire after their appointment at the clinic facilities rather than at home prior to their hearing assessment appointment. There were no identified risks or burdens to participants in this study. Conclusions: This approach met our criteria for feasibility. Understanding the impact of illness perception on patients’ coping behaviour in presbycusis could improve treatment outcomes and increase patient satisfaction, while promoting a more efficient and individualized audiology service.