76 resultados para Visual function
Resumo:
It is known that parallel pathways exist within the visual system. These have been described as magnocellular and parvocellular as a result of the layered organisation of the lateral geniculate nucleus and extend from the retina to the cortex. Dopamine (DA) and acetylcholine (ACH) are neurotransmitters that are present in the visual pathway. DA is present in the retina and is associated with the interplexiform cells and horizontal cells. ACH is also present in the retina and is associated with displaced amacrine cells; it is also present in the superior colliculus. DA is found to be significantly depleted in the brain of Parkinson's disease (PD) patients and ACH in Alzheimer's disease (AD) patients. For this reason these diseases were used to assess the function of DA and ACH in the electrophysiology of the visual pathway. Experiments were conducted on young normals to design stimuli that would preferentially activate the magnocellular or parvocellular pathway. These stimuli were then used to evoke visual evoked potentials (VEP) in patients with PD and AD, in order to assess the function of DA and ACH in the visual pathway. Electroretinograms (ERGs) were also measured in PD patients to assess the role of DA in the retina. In addition, peripheral ACH function was assessed by measuring VEPs, ERGs and contrast sensitivity (CS) in young normals following the topical instillation of hyoscine hydrobromide (an anticholinergic drug). The results indicate that the magnocellular pathway can be divided into two: a cholinergic tectal-association area pathway carrying luminance information, and a non-cholinergic geniculo-cortical pathway carrying spatial information. It was also found that depletion of DA had very little effect on the VEPs or ERGs, confirming a general regulatory function for this neurotransmitter.
Resumo:
Visual hyperacuities.are a group of thresholds whose values surpass that expected by the anatomical and optical constraints of the eye. There are many variables which affect hyperacuities of which this thesis considers the following .. 1. The effect of contrast on displacement detection and bisection acuity. It is proposed that spatial summation may account for the different response of these two hyperacuities compared with the contrast response of vernier acuity. 2. The effect of references on displacement detection. These were shown to greatly enhance performance when present. Their effect was, however, dependent upon the temporal characteristics of the displacement. 3. The effect of spatial frequency on vernier acuity. Evidence from this experiment suggests that vernier performance can be explained on the basis of the output of orientationally selective spatial frequency filters. 4. Evidence for a weighting function for visual location using random dot clusters. The weighting attached to different parts of the retinal light distribution was found to alter non-linearly with increasing offset from the geometric center of the cluster. A relationship between dot density and peak amplitude of the weighting function was found. 5. Spatial scaling of vernier acuity in the peripheral field. With careful choice of a technique which did not allow separation and eccentricity to co-vary it was found possible to scale vernier acuity both for two lines and two separated dots. 6. The effect of increasing age on hyperacuity. No change in vernier acuity with age was found which contrasted with displacement detection and bisection acuity both of which showed a significant decline with increasing age.
Resumo:
This study examined the use of non-standard parameters to investigate the visual field, with particular reference to the detection of glaucomatous visual field loss. Evaluation of the new perimetric strategy for threshold estimation - FASTPAC, demonstrated a reduction in the examination time of normals compared to the standard strategy. Despite an increased within-test variability the FASTPAC strategy produced a similar mean sensitivity to the standard strategy, reducing the effects of patient fatigue. The new technique of Blue-Yellow perimetry was compared to White-White perimetry for the detection of glaucomatous field loss in OHT and POAG. Using a database of normal subjects, confidence limits for normality were constructed to account for the increased between-subject variability with increase in age and eccentricity and for the greater variability of the Blue-Yellow field compared to the White-White field. Effects of individual ocular media absorption had little effect on Blue-Yellow field variability. Total and pattern probability analysis revealed five of 27 OHTs to exhibit Blue-Yellow focal abnormalities; two of these patients subsequently developed White-White loss. Twelve of the 24 POAGs revealed wider and/or deeper Blue-Yellow loss compared with the White-White field. Blue-Yellow perimetry showed good sensitivity and specificity characteristics, however, lack of perimetric experience and the presence of cataract influenced the Blue-Yellow visual field and may confound the interpretation of Blue-Yellow visual field loss. Visual field indices demonstrated a moderate relationship to the structural parameters of the optic nerve head using scanning laser tomography. No abnormalities in Blue-Yellow or Red-Green colour CS was apparent for the OHT patients. A greater vulnerability of the SWS pathway in glaucoma was demonstrated using Blue-Yellow perimetry however predicting which patients may benefit from B-Y perimetric examination is difficult. Furthermore, cataract and the extent of the field loss may limit the extent to which the integrity of the SWS channels can be selectively examined.
Resumo:
The principal aim of this work was to investigate the development of the S-cone colour-opponent pathway in human infants aged 4 weeks to 6 months. This was achieved by recording transient visual evoked responses to pattern-onset stimuli along a tritanopic confusion axis (tritan stimuli) at and around the adult isoluminant match. For comparison, visual evoked responses to red-green and luminance-modulated stimuli were recorded from the same infants at the same ages. Evoked responses were also recorded from colour-normal adults for comparison with those of the infants. The transient VEP allowed observation of response morphology as luminance differences were introduced to the chromatic stimuli. In this way, an estimate of isoluminance was possible in infants. Estimated isoluminant points for a group of six infants aged 6 to 10 weeks closely approximated the adult isoluminant match. This finding has implications for the use of photometric isoluminance in infant work, and suggests that photopic spectral sensitivity is similar in infants and adults. Abnormalities of the visual evoked responses to tritan, red-green and luminance-modulated stimuli in an infant with cystic fibrosis are reported. The results suggest abnormal function of the retino-striate visual pathway in this infant, and it is argued that these may be secondary to his illness, although data from more infants with cystic fibrosis are needed to clarify this further. A group of nine healthy infants demonstrated evoked responses to tritan stimuli by 4 to 10 weeks and to red-green stimuli by 6 to 11 weeks post-term age. Responses to luminance-modulated stimuli were present in all nine infants at the earliest age tested, namely 4 weeks post-term. The slightly earlier age of onset of evoked responses to tritan stimuli than for red-green may be explained by the relatively lower cone contrast afforded by red-green stimuli. Latency of the evoked response to both types of chromatic stimuli and to luminance-modulated stimuli decreased with age at a similar rate, suggesting that the visual pathways transmitting luminance and chromatic information mature at similar rates in young infants.
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function.
Resumo:
Alzheimer’s disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of ?-amyloid (A?) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections.
Resumo:
The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function. © 2012 Nova Science Publishers, Inc. All rights reserved.
Resumo:
Dementia with Lewy bodies ('Lewy body dementia' or 'diffuse Lewy body disease') (DLB) is the second most common form of dementia to affect elderly people, after Alzheimer's disease. A combination of the clinical symptoms of Alzheimer's disease and Parkinson's disease is present in DLB and the disorder is classified as a 'parkinsonian syndrome', a group of diseases which also includes Parkinson's disease, progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. Characteristics of DLB are fluctuating cognitive ability with pronounced variations in attention and alertness, recurrent visual hallucinations and spontaneous motor features, including akinesia, rigidity and tremor. In addition, DLB patients may exhibit visual signs and symptoms, including defects in eye movement, pupillary function and complex visual functions. Visual symptoms may aid the differential diagnoses of parkinsonian syndromes. Hence, the presence of visual hallucinations supports a diagnosis of Parkinson's disease or DLB rather than progressive supranuclear palsy. DLB and Parkinson's disease may exhibit similar impairments on a variety of saccadic and visual perception tasks (visual discrimination, space-motion and object-form recognition). Nevertheless, deficits in orientation, trail-making and reading the names of colours are often significantly greater in DLB than in Parkinson's disease. As primary eye-care practitioners, optometrists should be able to work with patients with DLB and their carers to manage their visual welfare.
Resumo:
This review describes the oculo-visual problems likely to be encountered in Parkinson's disease (PD) with special reference to three questions: (1) are there visual symptoms characteristic of the prodromal phase of PD, (2) is PD dementia associated with specific visual changes, and (3) can visual symptoms help in the differential diagnosis of the parkinsonian syndromes, viz. PD, progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD)? Oculo-visual dysfunction in PD can involve visual acuity, dynamic contrast sensitivity, colour discrimination, pupil reactivity, eye movement, motion perception, and visual processing speeds. In addition, disturbance of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations may be present. Prodromal features of PD may include autonomic system dysfunction potentially affecting pupil reactivity, abnormal colour vision, abnormal stereopsis associated with postural instability, defects in smooth pursuit eye movements, and deficits in visuo-motor adaptation, especially when accompanied by idiopathic rapid eye movement (REM) sleep behaviour disorder. PD dementia is associated with the exacerbation of many oculo-visual problems but those involving eye movements, visuo-spatial function, and visual hallucinations are most characteristic. Useful diagnostic features in differentiating the parkinsonian symptoms are the presence of visual hallucinations, visuo-spatial problems, and variation in saccadic eye movement dysfunction.
Resumo:
The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the "re-calibration" of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors' spatial representations and creates a "Shared Action Space" (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. © 2013 Pezzulo, Iodice, Ferraina and Kessler.
Resumo:
The early stages of dieting to lose weight have been associated with neuro-psychological impairments. Previous work has not elucidated whether these impairments are a function solely of unsupported or supported dieting. Raised cortico-steroid levels have been implicated as a possible causal mechanism. Healthy, overweight, pre-menopausal women were randomised to one of three conditions in which they dieted either as part of a commercially available weight loss group, dieted without any group support or acted as non-dieting controls for 8 weeks. Testing occurred at baseline and at 1, 4 and 8 weeks post baseline. During each session, participants completed measures of simple reaction time, motor speed, vigilance, immediate verbal recall, visuo-spatial processing and (at Week 1 only) executive function. Cortisol levels were gathered at the beginning and 30 min into each test session, via saliva samples. Also, food intake was self-recorded prior to each session and fasting body weight and percentage body fat were measured at each session. Participants in the unsupported diet condition displayed poorer vigilance performance (p=0.001) and impaired executive planning function (p=0.013) (along with a marginally significant trend for poorer visual recall (p=0.089)) after 1 week of dieting. No such impairments were observed in the other two groups. In addition, the unsupported dieters experienced a significant rise in salivary cortisol levels after 1 week of dieting (p<0.001). Both dieting groups lost roughly the same amount of body mass (p=0.011) over the course of the 8 weeks of dieting, although only the unsupported dieters experienced a significant drop in percentage body fat over the course of dieting (p=0.016). The precise causal nature of the relationship between stress, cortisol, unsupported dieting and cognitive function is, however, uncertain and should be the focus of further research. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: Previous investigations have demonstrated a relative vascular autoregulatory inefficiency of the inferior compared to the superior retina in healthy subjects breathing increased CO2. The purpose of this study was to determine whether the superior and inferior visual field sensitivities of healthy eyes are similarly affected during mild hypercapnia. DESIGN: Experimental study. METHODS: Visual field analysis (Humphrey Field Analyser; SITA standard 24-2 program) was carried out on one randomly selected eye of 22 subjects (mean age, 27.7 ± 5 years) during normal room air breathing and isoxic hypercapnia. The Student paired t-tests were used to compare the visual field indices mean deviation (MD) and pattern standard deviation (PSD) for each breathing condition. A secondary, sectoral analysis of mean pointwise sensitivity was performed for each condition. In each case a P value of <.01 was considered statistically significant (Bonferroni corrected). RESULTS: Visual field MD was -0.23 ± 0.95dB during room air breathing and -0.49 ± 1.04dB during hypercapnia (P = .034). Sectoral pointwise mean sensitivity deteriorated by 0.46dB (P = .006) in the upper visual hemifield during hypercapnia, whereas no significant difference was observed for the lower hemifield (P = .331). CONCLUSIONS: The upper visual hemifield exhibited a significantly greater degree of deterioration in pointwise visual field mean sensitivity compared to the lower hemifield during hypercapnic conditions. This suggests that the upper visual hemifield and hence inferior retina is more susceptible to insult during hypercapnia than the superior retina in healthy individuals. A regional susceptibility of inferior retinal function to altered vascular or metabolic effects may account for the earlier and more frequent inferior nerve fibre damage associated with glaucomatous optic neuropathy. © 2003 by Elsevier Science Inc. All rights reserved.
Resumo:
Alzheimer's disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of β-amyloid (Aβ) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections. © 2012 by Nova Science Publishers, Inc. All rights reserved.
Resumo:
A protocol with repeated stimulation cycles should be analyzed stepwise, in that each stimulation is evaluated, and a reaction pattern is identified. No two subjects will react identically, in that dilation and recovery times can vary; however, this is not reason enough to abandon a multiple stimulation cycle with fixed recovery and stimulation times. Furthermore, it enables us to examine and determine the range in which a normal subject will be placed and can then be compared to different pathophysiological states (i.e., smokers and different diseases). The purpose of our paper was to highlight the importance of evaluating these different cycles and the danger of false interpretation when averaging results. There are many different ways of evaluating dilatory responses and elasticity, but each of them must be carefully evaluated and should not be overaveraged, which can result in a loss of sensitivity and specificity.
Resumo:
Purpose: To examine visual outcomes following bilateral implantation of the FineVision trifocal intraocular lens (IOL; PhysIOL, Liège, Belgium). Methods: 26 patients undergoing routine cataract surgery were implanted bilaterally with the FineVision Trifocal IOL and followed up post-operatively for 3 months. The FineVision optic features a combination of 2 diffractive structures, resulting in distance, intermediate (+1.75 D add) and near vision (+3.50 D add) zones. Apodization of the optic surface increases far vision dominance with pupil aperture. Data collected at the 3 month visit included uncorrected and corrected distance (CDVA) and near vision; subjective refraction; defocus curve testing (photopic and mesopic); contrast sensitivity (CSV-1000); halometry glare testing and a questionnaire (NAVQ) to gauge near vision function and patient satisfaction. Results: The cohort comprised 15 males and 11 females, aged 52.5–82.4 years (mean 70.6 ± 8.2 years). Mean post-operative UDVA was 0.22 ± 0.14 logMAR, with a mean spherical equivalent refraction of +0.02 ± 0.35 D. Mean CDVA was 0.13 ± 0.10 logMAR monocularly, and 0.09 ± 0.07 logMAR binocularly. Defocus curve testing showed an extensive range of clear vision in both photopic and mesopic conditions. Patients showed high levels of satisfaction with their near vision (mean ± 0.9 ± 0.6, where 0 = completely satisfied, and 4 = completely unsatisfied) and demonstrated good spectacle independence. Conclusion: The FineVision IOL can be considered in patients seeking spectacle dependence following cataract surgery, and provide good patient satisfaction with uncorrected vision.