70 resultados para Visual Cortex
Resumo:
Single cell recordings in monkeys support the notion that the lateral prefrontal cortex (PFC) controls reactivation of visual working memory representations when rehearsal is disrupted. In contrast, recent fMRI findings yielded a double dissociation for PFC and the medial temporal lobe (MTL) in a letter working memory task. PFC was engaged in interference protection during reactivation while MTL was prominently involved in the retrieval of the letter representations. We present event-related potential data (ERP) that support PFC involvement in the top-down control of reactivation during a visual working memory task with endogenously triggered recovery after visual interference. A differentiating view is proposed for the role of PFC in working memory with respect to endogenous/exogenous control and to stimulus type. General implications for binding and retention mechanisms are discussed.
Resumo:
Background The somatosensory cortex has been inconsistently activated in pain studies and the functional properties of subregions within this cortical area are poorly understood. To address this we used magnetoencephalography (MEG), a brain imaging technique capable of recording changes in cortical neural activity in real-time, to investigate the functional properties of the somatosensory cortex during different phases of the visceral pain experience. Methods In eight participants (4 male), 151-channel whole cortex MEG was used to detect cortical neural activity during 25 trials lasting 20 seconds each. Each trial comprised four separate periods of 5 seconds in duration. During each of the periods, different visual cues were presented, indicating that period 1=rest, period 2=anticipation, period 3=pain and period 4=post pain. During period 3, participants received painful oesophageal balloon distensions (four at 1 Hz). Regions of cortical activity were identified using Synthetic Aperture Magnetometry (SAM) and by the placement of virtual electrodes in regions of interest within the somatosensory cortex, time-frequency wavelet plots were generated. Results SAM analysis revealed significant activation with the primary (S1) and secondary (S2) somatosensory cortices. The time-frequency wavelet spectrograms showed that activation in S1 increased during the anticipation phase and continued during the presentation of the stimulus. In S2, activation was tightly time and phase-locked to the stimulus within the pain period. Activations in both regions predominantly occurred within the 10–15 Hz and 20–30 Hz frequency bandwidths. Discussion These data are consistent with the role of S1 and S2 in the sensory discriminatory aspects of pain processing. Activation of S1 during anticipation and then pain may be linked to its proposed role in attentional as well as sensory processing. The stimulus-related phasic activity seen in S2 demonstrates that this region predominantly encodes information pertaining to the nature and intensity of the stimulus.
Resumo:
Objective.-To determine cortical oscillatory changes involved in migraine visual aura using magnetoencephalography (MEG). Background.-Visual aura in the form of scintillating scotoma precedes migraine in many cases. The involvement of cortical spreading depression within striate and extra-striate cortical areas is implicated in the generation of the disturbance, but the details of its progression, the effects on cortical oscillations, and the mechanisms of aura generation are unclear. Methods.-We used MEG to directly image changes in cortical oscillatory power during an episode of scintillating scotoma in a patient who experiences aura without subsequent migraine headache. Using the synthetic aperture magnetometry method of MEG source imaging, focal changes in cortical oscillatory power were observed over a 20-minute period and visualized in coregistration with the patient's magnetic resonance image. Results.-Alpha band desynchronization in both the left extra-striate and temporal cortex persisted for the duration of reported visual disturbance, terminating abruptly upon disappearance of scintillations. Gamma frequency desynchronization in the left temporal lobe continued for 8 to 10 minutes following the reported end of aura. Conclusions.-Observations implicate the extra-striate and temporal cortex in migraine visual aura and suggest involvement of alpha desynchronization in generation of phosphenes and gamma desynchronization in sustained inhibition of visual function.
Resumo:
The 'attentional blink' (AB) reflects a limitation in the ability to identify multiple items in a stream of rapidly presented information. Repetitive transcranial magnetic stimulation (rTMS), applied to a site over the right posterior parietal cortex, reduced the magnitude of the AB to visual stimuli, whilst no effect of rTMS was found when stimulation took place at a control site. The data confirm that the posterior parietal cortex may play a critical role in temporal as well as spatial aspects of visual attention.
Resumo:
We have investigated the effect of ageing on the visual system using the relatively new technique of magentoencephalography (MEG). This technique measures the magnetic signals produced by the visual system using a SQUID magnetometer. The magnetic visual evoked field (VEF) was measured over the occipital cortex to pattern and flash stimuli in 86 normal subjects aged 15 - 86 years. Factors that influenced subject defocussing or defixating the stimulus or selective attention were controlled as far as possible. The latency of the major positive component to the pattern reversal stimulus (P100M) increased with age particularly after the age of 55 years while the amplitude of the P100M decreased over the life span. The latency of the major flash component (P2M) increased much more slowly with age, while its amplitude decreased in only a proportion of elderly subjects. Changes in the P100M with age may reflect senile changes in the eye and optic nerve, e.g. senile miosis or degenerative changes in the retina. The P2M may be more susceptible to senile changes in the retina. The data suggest that the spatial frequency channels deteriorate more rapidly with age than the luminance channels and that MEG may be an effective method of studying ageing in the visual system.
Resumo:
In this thesis the relationship between visual attention, affordance and action was investigated using a combination of neuroimaging and behavioural studies. Neuronal activity and movement construction were assessed when individuals passively viewed or produced action towards stimuli varying in their affordance and/or attentional attributes. The main findings were: (i) the passive perception of both object and abstract visual patterns was associated with decreased alpha and/or beta activity in sensori-motor cortex, occipito-temporal cortex and cerebellum. These are brain regions associated with the planning and production of visually guided action; (ii) for object patterns, decreased alpha and beta activity was also observed in regions of superior parietal and premotor cortex. These regions contain neurons argued to be essential for matching hand kinematics with manipulate objects; and (iii) in both control participants and a deafferented individual, studies of planned and unplanned pointing manoeuvres revealed that the attentional bias of a stimulus was critical for fast, efficient action production whereas the affordance bias was critical in determining end-point accuracy. Taken together, these findings demonstrate that affordance is not a necessary prerequisite for the potential of motor codes. Rather, affordance enables the construction of motor responses that reflect object functionality and/or manipulability. They further demonstrate that visual attention is associated with the potentiation of motor codes. Indeed, directed visual attention would appear critical for speeded responses. These findings provide new insights into the roles of directed visual attention and affordance upon action.
Functional neuroimaging and behavioural studies on global form processing in the human visual system
Resumo:
Magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and behavioural experiments were used to investigate the neural processes underlying global form perception in human vision. Behavioural studies using Glass patterns examined sensitivity for detecting radial, rotational and horizontal structure. Neuroimaging experiments using either Glass patterns or arrays of Gabor patches determined the spatio-temporal neural responseto global form. MEG data were analysed using synthetic aperture magnetometry (SAM) to spatially map event-related cortical oscillatory power changes: the temporal sequencing of activity within a discrete cortical area was determined using a Morlet wavelet transform. A case study was conducted to determine the effects of strbismic amblyopia on global form processing: all other observers were normally-sighted. The main findings from normally-sighted observers were: 1) sensitivity to horizontal structure was less than for radial or rotational structure; 2) the neural response to global structure was a reduction in cortical oscillatory power (10-30 Hz) within a network of extrastriate areas, including V4 and V3a; 3) the extend of reduced cortical power was least for horizontal patters; 4) V1 was not identified as a region of peak activity with either MEG or fMRI. The main findings with the strabismic amblyope were: 1) sensitivity for detection of radial, rotational, and horizontal structure was reduced when viewed with the amblyopic- relative to the fellow- eye; 2) cortical power changes within V4 to the presentation of rotational Glass patterns were less when viewed with the amblyopic- compared with the fellow- eye. The main conclusions are: 1) a network of extrastriate cortical areas are involved in the analysis of global form, with the most prominent change in neural activity being a reduction in oscillatory power within the 10-30 Hz band; 2) in strabismic amblyopia, the neuronal assembly associated with form perception in extrastriate cortex may be dysfunctional, the nature of this dysfunction may be a change in the normal temporal pattern of neuronal discharges; 3) MEG, fMRI and behavioural measures support the notion that different neural processes underlie the perception of horizontal as opposed to radial or rotational structure.
Resumo:
The Octopus Automated Perimeter was validated in a comparative study and found to offer many advantages in the assessment of the visual field. The visual evoked potential was investigated in an extensive study using a variety of stimulus parameters to simulate hemianopia and central visual field defects. The scalp topography was recorded topographically and a technique to compute the source derivation of the scalp potential was developed. This enabled clarification of the expected scalp distribution to half field stimulation using different electrode montages. The visual evoked potential following full field stimulation was found to be asymmetrical around the midline with a bias over the left occiput particularly when the foveal polar projections of the occipital cortex were preferentially stimulated. The half field response reflected the distribution asymmetry. Masking of the central 3° resulted in a response which was approximately symmetrical around the midline but there was no evidence of the PNP-complex. A method for visual field quantification was developed based on the neural representation of visual space (Drasdo and Peaston 1982) in an attempt to relate visual field depravation with the resultant visual evoked potentials. There was no form of simple, diffuse summation between the scalp potential and the cortical generators. It was, however, possible to quantify the degree of scalp potential attenuation for M-scaled full field stimuli. The results obtained from patients exhibiting pre-chiasmal lesions suggested that the PNP-complex is not scotomatous in nature but confirmed that it is most likely to be related to specific diseases (Harding and Crews 1982). There was a strong correlation between the percentage information loss of the visual field and the diagnostic value of the visual evoked potential in patients exhibiting chiasmal lesions.
Resumo:
It is known that parallel pathways exist within the visual system. These have been described as magnocellular and parvocellular as a result of the layered organisation of the lateral geniculate nucleus and extend from the retina to the cortex. Dopamine (DA) and acetylcholine (ACH) are neurotransmitters that are present in the visual pathway. DA is present in the retina and is associated with the interplexiform cells and horizontal cells. ACH is also present in the retina and is associated with displaced amacrine cells; it is also present in the superior colliculus. DA is found to be significantly depleted in the brain of Parkinson's disease (PD) patients and ACH in Alzheimer's disease (AD) patients. For this reason these diseases were used to assess the function of DA and ACH in the electrophysiology of the visual pathway. Experiments were conducted on young normals to design stimuli that would preferentially activate the magnocellular or parvocellular pathway. These stimuli were then used to evoke visual evoked potentials (VEP) in patients with PD and AD, in order to assess the function of DA and ACH in the visual pathway. Electroretinograms (ERGs) were also measured in PD patients to assess the role of DA in the retina. In addition, peripheral ACH function was assessed by measuring VEPs, ERGs and contrast sensitivity (CS) in young normals following the topical instillation of hyoscine hydrobromide (an anticholinergic drug). The results indicate that the magnocellular pathway can be divided into two: a cholinergic tectal-association area pathway carrying luminance information, and a non-cholinergic geniculo-cortical pathway carrying spatial information. It was also found that depletion of DA had very little effect on the VEPs or ERGs, confirming a general regulatory function for this neurotransmitter.
Resumo:
We evaluated inter-individual variability in optimal current direction for biphasic transcranial magnetic stimulation (TMS) of the motor cortex. Motor threshold for first dorsal interosseus was detected visually at eight coil orientations in 45° increments. Each participant (n = 13) completed two experimental sessions. One participant with low test–retest correlation (Pearson's r < 0.5) was excluded. In four subjects, visual detection of motor threshold was compared to EMG detection; motor thresholds were very similar and highly correlated (0.94–0.99). Similar with previous studies, stimulation in the majority of participants was most effective when the first current pulse flowed towards postero-lateral in the brain. However, in four participants, the optimal coil orientation deviated from this pattern. A principal component analysis using all eight orientations suggests that in our sample the optimal orientation of current direction was normally distributed around the postero-lateral orientation with a range of 63° (S.D. = 13.70°). Whenever the intensity of stimulation at the target site is calculated as a percentage from the motor threshold, in order to minimize intensity and side-effects it may be worthwhile to check whether rotating the coil 45° from the traditional posterior–lateral orientation decreases motor threshold.