81 resultados para ULTRASHORT PULSES
Resumo:
A time dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time-spatial coordinates on the surface of a parabolic cylinder for the Airy pulse and a hyperbolic cylinder for the Gaussian. These pulses propagate in time with deceleration along the dominant propagation direction and drift uniformly in the lateral direction. The Airy pulse stops at infinity while the asymptotic velocity of the Gaussian is nonzero. © 2013 Optical Society of America.
Resumo:
A novel kind of Airy-based pulse with an invariant propagation in lossy dispersive media is proposed. The basic principle is based on an optical energy trade-off between different parts of the pulse caused by the chromatic dispersion, which is used to compensate the attenuation losses of the propagation medium. Although the ideal concept of the proposed pulses implies infinite pulse energy, the numerical simulations show that practical finite energy pulses can be designed to obtain a partially invariant propagation over a finite distance of propagation.
Resumo:
We present a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrödinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
We perform numerical simulations on a model describing a Brillouin-based temperature and strain sensor, testing its response when it is probed with relatively short pulses. Experimental results were recently published [e.g., Opt. Lett. 24, 510 (1999)] that showed a broadening of the Brillouin loss curve when the probe pulse duration is reduced, followed by a sudden and rather surprising reduction of the linewidth when the pulse duration gets shorter than the acoustic relaxation time. Our study reveals the processes responsible for this behavior. We give a clear physical insight into the problem, allowing us to define the best experimental conditions required for one to take the advantage of this effect.
Resumo:
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Resumo:
The radiation in the form of Airy and Gaussian optical pulses is investigated. It is shown that the pulse envelope moves decelerating in the time-spatial coordinates on the surface of a parabolic cylinder for the Airy pulse and a hyperbolic cylinder for the Gaussian. © 2013 IEEE.
Resumo:
We have observed unusual asymmetrical refractive index change as a result of femtosecond laser inscription in a crystal without center of inversion. Profile of the refractive index change exhibits sign turn within the domain of femtosecond pulse exposure. © Owned by the authors, published by EDP Sciences, 2013.
Resumo:
Recent developments in nonlinear optics have brought to the fore of intensive research an interesting class of pulses with a parabolic intensity profile and a linear instantaneous frequency shift or chirp. Parabolic pulses propagate in optical fibres with normal group-velocity dispersion in a self-similar manner, holding certain relations (scaling) between pulse power, duration and chirp parameter, and can tolerate strong nonlinearity without distortion or wave breaking. These solutions, which have been dubbed similaritons, were demonstrated theoretically and experimentally in fiber amplifiers in 2000. Similaritons in fiber amplifiers are, along with solitons in passive fibres, the most well-known classes of nonlinear attractors for pulse propagation in optical fibre, so they take on major fundamental importance. The unique properties of parabolic similaritons have stimulated numerous applications in nonlinear optics, ranging from ultrashort high-power pulse generation to highly coherent continuum sources and to optical nonlinear processing of telecommunication signals.
Resumo:
Recent developments in nonlinear optics have brought to the fore of intensive research an interesting class of pulses with a parabolic intensity profile and a linear instantaneous frequency shift or chirp. Parabolic pulses propagate in optical fibres with normal group-velocity dispersion in a self-similar manner, holding certain relations (scaling) between pulse power, duration and chirp parameter, and can tolerate strong nonlinearity without distortion or wave breaking. These solutions, which have been dubbed similaritons, were demonstrated theoretically and experimentally in fibre amplifiers in 2000. Similaritons in fibre amplifiers are, along with solitons in passive fibres, the most well-known classes of nonlinear attractors for pulse propagation in optical fibre, so they take on major fundamental importance. The unique properties of parabolic similaritons have stimulated numerous applications in nonlinear optics, ranging from ultrashort high-power pulse generation to highly coherent continuum sources and to optical nonlinear processing of telecommunication signals. In this work, we review the physics underlying the generation of parabolic similaritons as well as recent results obtained in a wide range of experimental configurations.
Resumo:
The concept of distributed Kerr-lens mode-locking and a thin-disk Yb:YAG oscillator based on this concept are presented. The described oscillator directly generates pulses with a duration of 49 fs and spectral width of 33 nm
Resumo:
Pulses with an envelope in the form of the Airy function are obtained using Green's functions in 1D and 2D in time domain. Interaction of such pulses with a dielectric layer is investigated and expressions for reflected and transmitted pulses are obtained. © 2012 EUROPEAN MICROWAVE ASSOC.
Resumo:
Ultrashort laser pulses from vertical-external-cavity surface-emitting lasers (VECSELs) have been receiving much attention in the semiconductor laser community since the first demonstration of sub-ps-pulsed devices more than a decade ago. Originally relying on semiconductor saturable-absorber mirrors for pulse formation, mode-locked operation has not only become accessible by using a variety of saturable absorbers, but also by using a saturable-absorber-free technique referred to as self-mode-locking (SML). Here, we highlight achievements in the field of SML-VECSELs with quantum-well and quantum-dot gain chips, and study the influence of a few VECSEL parameters on the assumed nonlinear lensing behavior in the system. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor. © 2011 SPIE.
Resumo:
A tunable bottle microresonator can trap an optical pulse of the given spectral width, hold it as long as the material losses permit, and release without distortion.