71 resultados para System modelling
Resumo:
The UK government aims at achieving 80% CO2 emission reduction by 2050 which requires collective efforts across all the UK industry sectors. In particular, the housing sector has a large potential to contribute to achieving the aim because the housing sector alone accounts for 27% of the total UK CO2 emission, and furthermore, 87% of the housing which is responsible for current 27% CO2 emission will still stand in 2050. Therefore, it is essential to improve energy efficiency of existing housing stock built with low energy efficiency standard. In order for this, a whole‐house needs to be refurbished in a sustainable way by considering the life time financial and environmental impacts of a refurbished house. However, the current refurbishment process seems to be challenging to generate a financially and environmentally affordable refurbishment solution due to the highly fragmented nature of refurbishment practice and a lack of knowledge and skills about whole‐house refurbishment in the construction industry. In order to generate an affordable refurbishment solution, diverse information regarding costs and environmental impacts of refurbishment measures and materials should be collected and integrated in right sequences throughout the refurbishment project life cycle among key project stakeholders. Consequently, various researchers increasingly study a way of utilizing Building Information Modelling (BIM) to tackle current problems in the construction industry because BIM can support construction professionals to manage construction projects in a collaborative manner by integrating diverse information, and to determine the best refurbishment solution among various alternatives by calculating the life cycle costs and lifetime CO2 performance of a refurbishment solution. Despite the capability of BIM, the BIM adoption rate is low with 25% in the housing sector and it has been rarely studied about a way of using BIM for housing refurbishment projects. Therefore, this research aims to develop a BIM framework to formulate a financially and environmentally affordable whole‐house refurbishment solution based on the Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) methods simultaneously. In order to achieve the aim, a BIM feasibility study was conducted as a pilot study to examine whether BIM is suitable for housing refurbishment, and a BIM framework was developed based on the grounded theory because there was no precedent research. After the development of a BIM framework, this framework was examined by a hypothetical case study using BIM input data collected from questionnaire survey regarding homeowners’ preferences for housing refurbishment. Finally, validation of the BIM framework was conducted among academics and professionals by providing the BIM framework and a formulated refurbishment solution based on the LCC and LCA studies through the framework. As a result, BIM was identified as suitable for housing refurbishment as a management tool, and it is timely for developing the BIM framework. The BIM framework with seven project stages was developed to formulate an affordable refurbishment solution. Through the case study, the Building Regulation is identified as the most affordable energy efficiency standard which renders the best LCC and LCA results when it is applied for whole‐house refurbishment solution. In addition, the Fabric Energy Efficiency Standard (FEES) is recommended when customers are willing to adopt high energy standard, and the maximum 60% of CO2 emissions can be reduced through whole‐house fabric refurbishment with the FEES. Furthermore, limitations and challenges to fully utilize BIM framework for housing refurbishment were revealed such as a lack of BIM objects with proper cost and environmental information, limited interoperability between different BIM software and limited information of LCC and LCA datasets in BIM system. Finally, the BIM framework was validated as suitable for housing refurbishment projects, and reviewers commented that the framework can be more practical if a specific BIM library for housing refurbishment with proper LCC and LCA datasets is developed. This research is expected to provide a systematic way of formulating a refurbishment solution using BIM, and to become a basis for further research on BIM for the housing sector to resolve the current limitations and challenges. Future research should enhance the BIM framework by developing more detailed process map and develop BIM objects with proper LCC and LCA Information.
Resumo:
In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation. © 2010 M. Cesarelli et al.
Resumo:
A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single "zoom-in" user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.
Resumo:
As more of the economy moves from traditional manufacturing to the service sector, the nature of work is becoming less tangible and thus, the representation of human behaviour in models is becoming more important. Representing human behaviour and decision making in models is challenging, both in terms of capturing the essence of the processes, and also the way that those behaviours and decisions are or can be represented in the models themselves. In order to advance understanding in this area, a useful first step is to evaluate and start to classify the various types of behaviour and decision making that are required to be modelled. This talk will attempt to set out and provide an initial classification of the different types of behaviour and decision making that a modeller might want to represent in a model. Then, it will be useful to start to assess the main methods of simulation in terms of their capability in representing these various aspects. The three main simulation methods, System Dynamics, Agent Based Modelling and Discrete Event Simulation all achieve this to varying degrees. There is some evidence that all three methods can, within limits, represent the key aspects of the system being modelled. The three simulation approaches are then assessed for their suitability in modelling these various aspects. Illustration of behavioural modelling will be provided from cases in supply chain management, evacuation modelling and rail disruption.
Resumo:
This thesis describes research that has developed the principles of a modelling tool for the analytical evaluation of a manufacturing strategy. The appropriate process of manufacturing strategy formulation is based on mental synthesis with formal planning processes supporting this role. Inherent to such processes is a stage where the effects of alternative strategies on the performance of a manufacturing system must be evaluated so that a choice of preferred strategy can be made. Invariably this evaluation is carried out by practitioners applying mechanisms of judgement, bargaining and analysis. Ibis thesis makes a significant and original contribution to the provision of analytical support for practitioners in this role. The research programme commences by defining the requirements of analytical strategy evaluation from the perspective of practitioners. A broad taxonomy of models has been used to identify a set of potentially suitable techniques for the strategy evaluation task. Then, where possible, unsuitable modelling techniques have been identified on the basis of evidence in the literature and discarded from this set. The remaining modelling techniques have been critically appraised by testing representative contemporary modelling tools in an industrially based experimentation programme. The results show that individual modelling techniques exhibit various limitations in the strategy evaluation role, though some combinations do appear to provide the necessary functionality. On the basis of this comprehensive and in-depth knowledge a modelling tool ' has been specifically designed for this task. Further experimental testing has then been conducted to verify the principles of this modelling tool. Ibis research has bridged the fields of manufacturing strategy formulation and manufacturing systems modelling and makes two contributions to knowledge. Firstly, a comprehensive and in-depth platform of knowledge has been established about modelling techniques in manufacturing strategy evaluation. Secondly, the principles of a tool that supports this role have been formed and verified.
Resumo:
This thesis describes research that has developed the principles of a modelling tool for the analytical evaluation of a manufacturing strategy. The appropriate process of manufacturing strategy formulation is based on mental synthesis with formal planning processes supporting this role. Inherent to such processes is a stage where the effects of alternative strategies on the performance of a manufacturing system must be evaluated so that a choice of preferred strategy can be made. Invariably this evaluation is carried out by practitioners applying mechanisms of judgement, bargaining and analysis. Ibis thesis makes a significant and original contribution to the provision of analytical support for practitioners in this role. The research programme commences by defining the requirements of analytical strategy evaluation from the perspective of practitioners. A broad taxonomy of models has been used to identify a set of potentially suitable techniques for the strategy evaluation task. Then, where possible, unsuitable modelling techniques have been identified on the basis of evidence in the literature and discarded from this set. The remaining modelling techniques have been critically appraised by testing representative contemporary modelling tools in an industrially based experimentation programme. The results show that individual modelling techniques exhibit various limitations in the strategy evaluation role, though some combinations do appear to provide the necessary functionality. On the basis of this comprehensive and in-depth knowledge a modelling tool ' has been specifically designed for this task. Further experimental testing has then been conducted to verify the principles of this modelling tool. Ibis research has bridged the fields of manufacturing strategy formulation and manufacturing systems modelling and makes two contributions to knowledge. Firstly, a comprehensive and in-depth platform of knowledge has been established about modelling techniques in manufacturing strategy evaluation. Secondly, the principles of a tool that supports this role have been formed and verified.
Resumo:
As the world’s natural resources dwindle and critical levels of environmental pollution are approached, sustainability becomes a key issue for governments, organisations and individuals. With the consequences of such an issue in mind, this paper introduces a unifying approach to measure the sustainability performance of socio-economic systems based on the interplay between two key variables: essentiality of consumption and environmental impact. This measure attributes to every system a ‘fitness’ value i.e. a quantity that reflects its ability to remain resilient/healthy by avoiding ecological, social and economic collapse as it consumes the available resources. This new measure is tested on a system where there is a limited supply of resources and four basic consumption types. The analysis has theoretical implications as well as practical importance as it can help countries, organisations or even individuals, in finding better ways to measure sustainability performance.
Resumo:
A Finite Element Analysis (FEA) model is used to explore the relationship between clogging and hydraulics that occurs in Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) in the United Kingdom (UK). Clogging is assumed to be caused by particle transport and an existing single collector efficiency model is implemented to describe this behaviour. The flow model was validated against HSSF TW survey results obtained from the literature. The model successfully simulated the influence of overland flow on hydrodynamics, and the interaction between vertical flow through the low permeability surface layer and the horizontal flow of the saturated water table. The clogging model described the development of clogging within the system but under-predicted the extent of clogging which occurred over 15 years. This is because important clogging mechanisms were not considered by the model, such as biomass growth and vegetation establishment. The model showed the usefulness of FEA for linking hydraulic and clogging phenomenon in HSSF TWs and could be extended to include treatment processes. © 2011 Springer Science+Business Media B.V.
Resumo:
Queuing is a key efficiency criterion in any service industry, including Healthcare. Almost all queue management studies are dedicated to improving an existing Appointment System. In developing countries such as Pakistan, there are no Appointment Systems for outpatients, resulting in excessive wait times. Additionally, excessive overloading, limited resources and cumbersome procedures lead to over-whelming queues. Despite numerous Healthcare applications, Data Envelopment Analysis (DEA) has not been applied for queue assessment. The current study aims to extend DEA modelling and demonstrate its usefulness by evaluating the queue system of a busy public hospital in a developing country, Pakistan, where all outpatients are walk-in; along with construction of a dynamic framework dedicated towards the implementation of the model. The inadequate allocation of doctors/personnel was observed as the most critical issue for long queues. Hence, the Queuing-DEA model has been developed such that it determines the ‘required’ number of doctors/personnel. The results indicated that given extensive wait times or length of queue, or both, led to high target values for doctors/personnel. Hence, this crucial information allows the administrators to ensure optimal staff utilization and controlling the queue pre-emptively, minimizing wait times. The dynamic framework constructed, specifically targets practical implementation of the Queuing-DEA model in resource-poor public hospitals of developing countries such as Pakistan; to continuously monitor rapidly changing queue situation and display latest required personnel. Consequently, the wait times of subsequent patients can be minimized, along with dynamic staff scheduling in the absence of appointments. This dynamic framework has been designed in Excel, requiring minimal training and work for users and automatic update features, with complex technical aspects running in the background. The proposed model and the dynamic framework has the potential to be applied in similar public hospitals, even in other developing countries, where appointment systems for outpatients are non-existent.
Resumo:
This thesis presents the study of a two-degree-of-freedom (2 DOF) nonlinear system consisting of two grounded linear oscillators coupled to two separate light weight nonlinear energy sinks of an essentially nonlinear stiffness. In this thesis, Targeted Energy Transfer (TET) and NES concept are introduced. Previous studies and research of Energy pumping and NES are presented. The characters in nonlinear energy pumping have been introduced at the start of the thesis. For the aim to design the application of a tremor reduction assessment device, the knowledge of tremor reduction has also been mentioned. Two main parties have been presented in the research: dynamical theoretic method of nonlinear energy pumping study and experiments of nonlinear vibration reduction model. In this thesis, nonlinear energy sink (NES) has been studied and used as a core attachment for the research. A new theoretic method of nonlinear vibration reduction which with two NESs has been attached to a primary system has been designed and tested with the technology of targeted energy transfer. Series connection and parallel connection structure systems have been designed to run the tests. Genetic algorithm has been used and presented in the thesis for searching the fit components. One more experiment has been tested with the final components. The results have been compared to find out most efficiency structure and components for the theoretic model. A tremor reduction experiment has been designed and presented in the thesis. The experiment is for designing an application for reducing human body tremor. By using the theoretic method earlier, the experiment has been designed and tested with a tremor reduction model. The experiment includes several tests, one single NES attached system and two NESs attached systems with different structures. The results of theoretic models and experiment models have been compared. The discussion has been made in the end. At the end of the thesis, some further work has been considered to designing the device of the tremor reduction.