123 resultados para Sensors
Resumo:
We report the implementation of vector bending sensors using long-period gratings (LPGs) UV-inscribed in flat-clad, four-core and D-shaped fibres. Our experiments reveal a strong fibre-orientation dependence of the spectral response when such LPGs are subjected to dynamic bending, which provided an opportunity to realize curvature measurement with direction recognition.
Resumo:
The curvature- or bend-sensing response of long-period gratings (LPGs) UV inscribed in D-shaped fiber has been investigated experimentally. Strong fiber-orientation dependence of the spectral response when such LPGs are subjected to bending at different directions has been observed and is shown to form the basis for a new class of single-device sensor with vector-sensing capability. Potential applications utilizing the linear response and unique bend-orientation characteristics of the devices are discussed.
Resumo:
Reported are experimental results from investigations of the sensing properties of long-period gratings (LPGs) recorded in two different geometries of photonic crystal fibre (PCF): a large-mode area PCF and an endlessly single mode PCF. The LPGs have been characterised for their sensitivity to temperature, bending, surrounding index and strain. The LPGs in both fibres have been found to have negligible temperature sensitivity whilst exhibiting useful strain sensitivities. Strong directional bend sensitivity is shown by one PCF whilst the other shows good non-directional bend sensitivity. The fibres exhibit differing sensitivities to surrounding refractive index. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Distributive tactile sensing is a method of tactile sensing in which a small number of sensors monitors the behaviour of a flexible substrate which is in contact with the object being sensed. This paper describes the first use of fibre Bragg grating sensors in such a system. Two systems are presented: the first is a one-dimensional metal strip with an array of four sensors, which is capable of detecting the magnitude and position of a contacting load. This system is favourably compared experimentally with a similar system using resistive strain gauges. The second system is a two-dimensional steel plate with nine sensors which is able to distinguish the position and shape of a contacting load, or the positions of two loads simultaneously. This system is compared with a similar system using 16 infrared displacement sensors. Each system uses neural networks to process the sensor data to give information concerning the type of contact. Issues and limitations of the systems are discussed, along with proposed solutions to some of the difficulties. © 2007 IOP Publishing Ltd.
Resumo:
We experimentally investigate the use of an arrayed waveguide grating (AWG) to interrogate fibre Bragg grating (FBG) sensors. A broadband light source is used to illuminate the FBG sensors. Reflected spectral information is directed to the AWG containing integral photodetectors providing 40 electrical outputs. Three methods are described to interrogate FBG sensors. The first technique makes use of the wavelength-dependent transmission profile of an AWG channel passband, giving a usable range of 500 με and a dynamic strain resolution of 96 nε Hz-1/2 at 13 Hz. The second approach utilizes wide gratings larger than the channel spacing of the AWG; by monitoring the intensity present in several neighbouring AWG channels an improved range of 1890 με was achieved. The third method improves the dynamic range by utilizing a heterodyne approach based on interferometric wavelength shift detection, providing an improved dynamic strain resolution of 17 nε Hz -1/2 at 30 Hz. © 2005 IOP Publishing Ltd.
Resumo:
We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched f ilter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of ~0.05 µe/vHz at 20 Hz, while the interferometric phase resolution is better than 1 mrad/vHz at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.
Resumo:
We report an implementation of optical fibre sensors based on fibre Bragg gratings with excessively tilted (>45°) structures, showing distinctive polarisation characteristics, desirable low thermal-cross-sensitivity and enhanced responsivity to surrounding-medium-refractive-index.
Resumo:
We report experimental findings for tailoring the temperature and strain coefficients of Type I and Type IA fibre Bragg gratings by influencing the photosensitivity presensitization of the host optical fibre. It is shown that by controlling the level of hydrogen saturation, via hot and cold hydrogenation, it is possible to produce gratings with lower thermal coefficients. Furthermore, there is a larger difference between the Type I and Type IA thermal coefficients and a significant improvement in the matrix condition number, which impacts the ability to recover accurate temperature and strain data using the Type 1-1A dual grating sensor. © 2006 IOP Publishing Ltd.
Resumo:
We describe the production and characterization of FC/PC connectorised fibre Bragg grating sensors in polymer fibre. Sensors were recorded in few-moded and single mode microstructured fibre composed of poly (methyl methacrylate). © 2013 SPIE.
Resumo:
When exposed to high levels of strain, polymer optical fibre grating sensors recorded in poly(methyl methacrylate) based fibre often exhibit hysteresis in the response of their Bragg wavelength to strain. We demonstrate that the application of pre-tension and annealing of the polymer fibre can reduce this hysteresis when the fibre is suspended freely between two supports, but much better performance is obtained when the sensor is attached directly to a substrate. In this case, the hysteresis can be lessened by more than a factor of 12. © 2014 IOP Publishing Ltd.
Resumo:
Mechanical physiological pulsations are movements of a body surface incited by the movements of muscles in organs inside the body. Here we demonstrate the use of long-period grating sensors in the detection of cardio-vascular pulsations (CVP), in particular apex and carotid pulsations. To calibrate the sensors, we use a mechanical tool designed specifically to measure the sensor response to a localized perturbation at different grating curvatures as working points. From the data we infer the amplitude of the CVP. Together with the electrophysiological signals, the CVP signals obtained from the sensors can provide significant information on heart function which is inaccessible to the electrocardiogram. The low cost and easy handling of the fibre sensors increase their prospects to become the sensors of choice for novel diagnostic devices. © 2013 The Royal Swedish Academy of Sciences.
Resumo:
The humidity response of poly(methyl methacrylate) (PMMA)-based optical fiber Bragg gratings (POFBGs) has been studied. The characteristic wavelength of the grating is modulated by water absorption-induced swelling and refractive index change in the fiber. This work indicates that anisotropic expansion may exist in PMMA optical fiber, reducing the humidity responsivity of the grating and introducing uncertainty in the responsivity from fiber to fiber. By pre-straining a grating, one can get rid of this uncertainty and simultaneously improve the POFBG response time. © 2014 Optical Society of America.
Resumo:
In non-invasive ventilation, continuous monitoring of respiratory volumes is essential. Here, we present a method for the measurement of respiratory volumes by a single fiber-grating sensor of bending and provide the proof-of-principle by applying a calibration-test measurement procedure on a set of 18 healthy volunteers. Results establish a linear correlation between a change in lung volume and the corresponding change in a local thorax curvature. They also show good sensor accuracy in measurements of tidal and minute respiratory volumes for different types of breathing. The proposed technique does not rely on the air flow through an oronasal mask or the observation of chest movement by a clinician, which distinguishes it from the current clinical practice. © 2014 Optical Society of America.
Resumo:
Simulated annealing technique is used to improve the performance of fiber Bragg grating (FBG) sensors in a wavelength-division-multiplexed network. Experiments demonstrated strain detection accuracy of ̃2.5 με when the spectrums of FBGs are fully or partially overlapped.
High stress monitoring of prestressing tendons in nuclear concrete vessels using fibre-optic sensors
Resumo:
Maintaining the structural health of prestressed concrete nuclear containments is a key element in ensuring nuclear reactors are capable of meeting their safety requirements. This paper discusses the attachment, fabrication and characterisation of optical fibre strain sensors suitable for the prestress monitoring of irradiated steel prestressing tendons. The all-metal fabrication and welding process allowed the instrumented strand to simultaneously monitor and apply stresses up to 1300 MPa (80% of steel's ultimate tensile strength). There were no adverse effects to the strand's mechanical properties or integrity. After sensor relaxation through cyclic stress treatment, strain transfer between the optical fibre sensors and the strand remained at 69%. The fibre strain sensors could also withstand the non-axial forces induced as the strand was deflected around a 4.5 m bend radius. Further development of this technology has the potential to augment current prestress monitoring practices, allowing distributed measurements of short- and long-term prestress losses in nuclear prestressed-concrete vessels. © 2014 Elsevier B.V.