88 resultados para Semantic web, Search engine optimization, Information retrieval, Key concept induction
Resumo:
Sentiment analysis over Twitter offer organisations a fast and effective way to monitor the publics' feelings towards their brand, business, directors, etc. A wide range of features and methods for training sentiment classifiers for Twitter datasets have been researched in recent years with varying results. In this paper, we introduce a novel approach of adding semantics as additional features into the training set for sentiment analysis. For each extracted entity (e.g. iPhone) from tweets, we add its semantic concept (e.g. Apple product) as an additional feature, and measure the correlation of the representative concept with negative/positive sentiment. We apply this approach to predict sentiment for three different Twitter datasets. Our results show an average increase of F harmonic accuracy score for identifying both negative and positive sentiment of around 6.5% and 4.8% over the baselines of unigrams and part-of-speech features respectively. We also compare against an approach based on sentiment-bearing topic analysis, and find that semantic features produce better Recall and F score when classifying negative sentiment, and better Precision with lower Recall and F score in positive sentiment classification.
Resumo:
Procedural knowledge is the knowledge required to perform certain tasks. It forms an important part of expertise, and is crucial for learning new tasks. This paper summarises existing work on procedural knowledge acquisition, and identifies two major challenges that remain to be solved in this field; namely, automating the acquisition process to tackle bottleneck in the formalization of procedural knowledge, and enabling machine understanding and manipulation of procedural knowledge. It is believed that recent advances in information extraction techniques can be applied compose a comprehensive solution to address these challenges. We identify specific tasks required to achieve the goal, and present detailed analyses of new research challenges and opportunities. It is expected that these analyses will interest researchers of various knowledge management tasks, particularly knowledge acquisition and capture.
Resumo:
Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.
Resumo:
Schema heterogeneity issues often represent an obstacle for discovering coreference links between individuals in semantic data repositories. In this paper we present an approach, which performs ontology schema matching in order to improve instance coreference resolution performance. A novel feature of the approach is its use of existing instance-level coreference links defined in third-party repositories as background knowledge for schema matching techniques. In our tests of this approach we obtained encouraging results, in particular, a substantial increase in recall in comparison with existing sets of coreference links.
Resumo:
Most of the existing work on information integration in the Semantic Web concentrates on resolving schema-level problems. Specific issues of data-level integration (instance coreferencing, conflict resolution, handling uncertainty) are usually tackled by applying the same techniques as for ontology schema matching or by reusing the solutions produced in the database domain. However, data structured according to OWL ontologies has its specific features: e.g., the classes are organized into a hierarchy, the properties are inherited, data constraints differ from those defined by database schema. This paper describes how these features are exploited in our architecture KnoFuss, designed to support data-level integration of semantic annotations.
Resumo:
Automated ontology population using information extraction algorithms can produce inconsistent knowledge bases. Confidence values assigned by the extraction algorithms may serve as evidence in helping to repair inconsistencies. The Dempster-Shafer theory of evidence is a formalism, which allows appropriate interpretation of extractors’ confidence values. This chapter presents an algorithm for translating the subontologies containing conflicts into belief propagation networks and repairing conflicts based on the Dempster-Shafer plausibility.
Resumo:
Because poor quality semantic metadata can destroy the effectiveness of semantic web technology by hampering applications from producing accurate results, it is important to have frameworks that support their evaluation. However, there is no such framework developedto date. In this context, we proposed i) an evaluation reference model, SemRef, which sketches some fundamental principles for evaluating semantic metadata, and ii) an evaluation framework, SemEval, which provides a set of instruments to support the detection of quality problems and the collection of quality metrics for these problems. A preliminary case study of SemEval shows encouraging results.
Resumo:
The semantic web vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language and an ontology as input, and returns answers drawn from one or more knowledge bases (KBs). We say that AquaLog is portable because the configuration time required to customize the system for a particular ontology is negligible. AquaLog presents an elegant solution in which different strategies are combined together in a novel way. It makes use of the GATE NLP platform, string metric algorithms, WordNet and a novel ontology-based relation similarity service to make sense of user queries with respect to the target KB. Moreover it also includes a learning component, which ensures that the performance of the system improves over the time, in response to the particular community jargon used by end users.
Resumo:
This article characterizes key weaknesses in the ability of current digital libraries to support scholarly inquiry, and as a way to address these, proposes computational services grounded in semiformal models of the naturalistic argumentation commonly found in research literatures. It is argued that a design priority is to balance formal expressiveness with usability, making it critical to coevolve the modeling scheme with appropriate user interfaces for argument construction and analysis. We specify the requirements for an argument modeling scheme for use by untrained researchers and describe the resulting ontology, contrasting it with other domain modeling and semantic web approaches, before discussing passive and intelligent user interfaces designed to support analysts in the construction, navigation, and analysis of scholarly argument structures in a Web-based environment. © 2007 Wiley Periodicals, Inc. Int J Int Syst 22: 17–47, 2007.
Resumo:
We are interested in the annotation of knowledge which does not necessarily require a consensus. Scholarly debate is an example of such a category of knowledge where disagreement and contest are widespread and desirable, and unlike many Semantic Web approaches, we are interested in the capture and the compilation of these conflicting viewpoints and perspectives. The Scholarly Ontologies project provides the underlying formalism to represent this meta-knowledge, and we will look at ways to lighten the burden of its creation. After having described some particularities of this kind of knowledge, we introduce ClaimSpotter, our approach to support its ‘capture’, based on the elicitation of a number of recommendations which are presented for consideration to our annotators (or analysts), and give some elements of evaluation.
Resumo:
The growing use of a variety of information systems in crisis management both by non-governmental organizations (NGOs) and emergency management agencies makes the challenges of information sharing and interoperability increasingly important. The use of semantic web technologies is a growing area and is a technology stack specifically suited to these challenges. This paper presents a review of ontologies, vocabularies and taxonomies that are useful in crisis management systems. We identify the different subject areas relevant to crisis management based on a review of the literature. The different ontologies and vocabularies available are analysed in terms of their coverage, design and usability. We also consider the use cases for which they were designed and the degree to which they follow a variety of standards. While providing comprehensive ontologies for the crisis domain is not feasible or desirable there is considerable scope to develop ontologies for the subject areas not currently covered and for the purposes of interoperability.
Resumo:
Yorick Wilks is a central figure in the fields of Natural Language Processing and Artificial Intelligence. His influence has extends to many areas of these fields and includes contributions to Machine Translation, word sense disambiguation, dialogue modeling and Information Extraction.This book celebrates the work of Yorick Wilks from the perspective of his peers. It consists of original chapters each of which analyses an aspect of his work and links it to current thinking in that area. His work has spanned over four decades but is shown to be pertinent to recent developments in language processing such as the Semantic Web.This volume forms a two-part set together with Words and Intelligence I, Selected Works by Yorick Wilks, by the same editors.
Resumo:
This article presents a new method for data collection in regional dialectology based on site-restricted web searches. The method measures the usage and determines the distribution of lexical variants across a region of interest using common web search engines, such as Google or Bing. The method involves estimating the proportions of the variants of a lexical alternation variable over a series of cities by counting the number of webpages that contain the variants on newspaper websites originating from these cities through site-restricted web searches. The method is evaluated by mapping the 26 variants of 10 lexical variables with known distributions in American English. In almost all cases, the maps based on site-restricted web searches align closely with traditional dialect maps based on data gathered through questionnaires, demonstrating the accuracy of this method for the observation of regional linguistic variation. However, unlike collecting dialect data using traditional methods, which is a relatively slow process, the use of site-restricted web searches allows for dialect data to be collected from across a region as large as the United States in a matter of days.
Resumo:
Many software engineers have found that it is difficult to understand, incorporate and use different formal models consistently in the process of software developments, especially for large and complex software systems. This is mainly due to the complex mathematical nature of the formal methods and the lack of tool support. It is highly desirable to have software models and their related software artefacts systematically connected and used collaboratively, rather than in isolation. The success of the Semantic Web, as the next generation of Web technology, can have profound impact on the environment for formal software development. It allows both the software engineers and machines to understand the content of formal models and supports more effective software design in terms of understanding, sharing and reusing in a distributed manner. To realise the full potential of the Semantic Web in formal software development, effectively creating proper semantic metadata for formal software models and their related software artefacts is crucial. This paper proposed a framework that allows users to interconnect the knowledge about formal software models and other related documents using the semantic technology. We first propose a methodology with tool support is proposed to automatically derive ontological metadata from formal software models and semantically describe them. We then develop a Semantic Web environment for representing and sharing formal Z/OZ models. A method with prototype tool is presented to enhance semantic query to software models and other artefacts. © 2014.
Resumo:
Geospatial data have become a crucial input for the scientific community for understanding the environment and developing environmental management policies. The Global Earth Observation System of Systems (GEOSS) Clearinghouse is a catalogue and search engine that provides access to the Earth Observation metadata. However, metadata are often not easily understood by users, especially when presented in ISO XML encoding. Data quality included in the metadata is basic for users to select datasets suitable for them. This work aims to help users to understand the quality information held in metadata records and to provide the results to geospatial users in an understandable and comparable way. Thus, we have developed an enhanced tool (Rubric-Q) for visually assessing the metadata quality information and quantifying the degree of metadata population. Rubric-Q is an extension of a previous NOAA Rubric tool used as a metadata training and improvement instrument. The paper also presents a thorough assessment of the quality information by applying the Rubric-Q to all dataset metadata records available in the GEOSS Clearinghouse. The results reveal that just 8.7% of the datasets have some quality element described in the metadata, 63.4% have some lineage element documented, and merely 1.2% has some usage element described. © 2013 IEEE.