69 resultados para Semantic annotations
Resumo:
Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words' sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure. © 2014 Springer International Publishing.
Resumo:
As the Semantic Web is an open, complex and constantly evolving medium, it is the norm, but not exception that information at different sites is incomplete or inconsistent. This poses challenges for the engineering and development of agent systems on the Semantic Web, since autonomous software agents need to understand, process and aggregate this information. Ontology language OWL provides core language constructs to semantically markup resources on the Semantic Web, on which software agents interact and cooperate to accomplish complex tasks. However, as OWL was designed on top of (a subset of) classic predicate logic, it lacks the ability to reason about inconsistent or incomplete information. Belief-augmented Frames (BAF) is a frame-based logic system that associates with each frame a supporting and a refuting belief value. In this paper, we propose a new ontology language Belief-augmented OWL (BOWL) by integrating OWL DL and BAF to incorporate the notion of confidence. BOWL is paraconsistent, hence it can perform useful reasoning services in the presence of inconsistencies and incompleteness. We define the abstract syntax and semantics of BOWL by extending those of OWL. We have proposed reasoning algorithms for various reasoning tasks in the BOWL framework and we have implemented the algorithms using the constraint logic programming framework. One example in the sensor fusion domain is presented to demonstrate the application of BOWL.
Resumo:
Indicators are widely used by organizations as a way of evaluating, measuring and classifying organizational performance. As part of performance evaluation systems, indicators are often shared or compared across internal sectors or with other organizations. However, indicators can be vague and imprecise, and also can lack semantics, making comparisons with other indicators difficult. Thus, this paper presents a knowledge model based on an ontology that may be used to represent indicators semantically and generically, dealing with the imprecision and vagueness, and thus facilitating better comparison. Semantic technologies are shown to be suitable for this solution, so that it could be able to represent complex data involved in indicators comparison.
Resumo:
We propose a description logic extending SROIQ (the description logic underlying OWL 2 DL) and at the same time encompassing some of the most prominent monotonic and nonmonotonic rule languages, in particular Datalog extended with the answer set semantics. Our proposal could be considered a substantial contribution towards fulfilling the quest for a unifying logic for the Semantic Web. As a case in point, two non-monotonic extensions of description logics considered to be of distinct expressiveness until now are covered in our proposal. In contrast to earlier such proposals, our language has the "look and feel" of a description logic and avoids hybrid or first-order syntaxes. © 2012 The Author(s).
Resumo:
Wireless Sensor Network (WSN) systems have become more and more popular in our modern life. They have been widely used in many areas, such as smart homes/buildings, context-aware devices, military applications, etc. Despite the increasing usage, there is a lack of formal description and automated verification for WSN system design. In this paper, we present an approach to support the rigorous verification of WSN modeling using the Semantic Web technology We use Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL) to define a meta-ontology for the modeling of WSN systems. Furthermore, we apply ontology reasoners to perform automated verification on customized WSN models and their instances. We demonstrate and evaluate our approach through a Light Control System (LCS) as the case study.
Resumo:
The semantic model developed in this research was in response to the difficulty a group of mathematics learners had with conventional mathematical language and their interpretation of mathematical constructs. In order to develop the model ideas from linguistics, psycholinguistics, cognitive psychology, formal languages and natural language processing were investigated. This investigation led to the identification of four main processes: the parsing process, syntactic processing, semantic processing and conceptual processing. The model showed the complex interdependency between these four processes and provided a theoretical framework in which the behaviour of the mathematics learner could be analysed. The model was then extended to include the use of technological artefacts into the learning process. To facilitate this aspect of the research, the theory of instrumentation was incorporated into the semantic model. The conclusion of this research was that although the cognitive processes were interdependent, they could develop at different rates until mastery of a topic was achieved. It also found that the introduction of a technological artefact into the learning environment introduced another layer of complexity, both in terms of the learning process and the underlying relationship between the four cognitive processes.
Resumo:
The ontology engineering research community has focused for many years on supporting the creation, development and evolution of ontologies. Ontology forecasting, which aims at predicting semantic changes in an ontology, represents instead a new challenge. In this paper, we want to give a contribution to this novel endeavour by focusing on the task of forecasting semantic concepts in the research domain. Indeed, ontologies representing scientific disciplines contain only research topics that are already popular enough to be selected by human experts or automatic algorithms. They are thus unfit to support tasks which require the ability of describing and exploring the forefront of research, such as trend detection and horizon scanning. We address this issue by introducing the Semantic Innovation Forecast (SIF) model, which predicts new concepts of an ontology at time t + 1, using only data available at time t. Our approach relies on lexical innovation and adoption information extracted from historical data. We evaluated the SIF model on a very large dataset consisting of over one million scientific papers belonging to the Computer Science domain: the outcomes show that the proposed approach offers a competitive boost in mean average precision-at-ten compared to the baselines when forecasting over 5 years.
Resumo:
In this paper, the problem of semantic place categorization in mobile robotics is addressed by considering a time-based probabilistic approach called dynamic Bayesian mixture model (DBMM), which is an improved variation of the dynamic Bayesian network. More specifically, multi-class semantic classification is performed by a DBMM composed of a mixture of heterogeneous base classifiers, using geometrical features computed from 2D laserscanner data, where the sensor is mounted on-board a moving robot operating indoors. Besides its capability to combine different probabilistic classifiers, the DBMM approach also incorporates time-based (dynamic) inferences in the form of previous class-conditional probabilities and priors. Extensive experiments were carried out on publicly available benchmark datasets, highlighting the influence of the number of time-slices and the effect of additive smoothing on the classification performance of the proposed approach. Reported results, under different scenarios and conditions, show the effectiveness and competitive performance of the DBMM.