130 resultados para Neodymium lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We numerically show the possibility of pulse shaping in a mode-locked fiber laser by inclusion of an amplitude-phase spectral filter into the laser cavity. Various advanced temporal waveforms are generated, including parabolic, flat-top and triangular pulses. © 2014 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrödinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We proposed and demonstrated pulsed fiber lasers Q-switched and mode-locked by using a large-angle tilted fiber grating, for the first time to our best knowledge. Owing to the unique polarization properties of the large-angle tilted fiber grating (LA-TFG), i.e. polarization-dependent loss and polarization-mode splitting, switchable dual-wavelength Q-switched and mode-locked pulses have been achieved with short and long cavities, respectively. For the mode-locking case, the laser was under the operation of nanosecond rectangular pulses, due to the peak-power clamping effect. With the increasing pump power, the durations of both single-and dual-wavelength rectangular pulses increase. It was also found that each filtered wavelength of the dual-wavelength rectangular pulse corresponds to an individual nanosecond rectangular pulse by employing a tunable bandpass filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a general technique how to reveal in experiments of limited electrical bandwidth which is lower than the optical bandwidth of the optical signal under study, whether the statistical properties of the light source obey Gaussian distribution or mode correlations do exist. To do that one needs to perform measurements by decreasing the measurement bandwidth. We develop a simple model of bandwidth-limited measurements and predict universal laws how intensity probability density function and intensity auto-correlation function of ideal completely stochastic source of Gaussian statistics depend on limited measurement bandwidth and measurement noise level. Results of experimental investigation are in good agreement with model predictions. In particular, we reveal partial mode correlations in the radiation of quasi-CW Raman fibre laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high-resolution real-time measurements of spectrum evolution in a fibre. The proposed method combines optical heterodyning with a technique of spatio-temporal intensity measurements revealing fast spectral dynamics of cavity-based systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-long mode-locked lasers are known to be strongly influenced by nonlinear interactions in long cavities that results in noise-like stochastic pulses. Here, by using an advanced technique of real-time measurements of both temporal and spatial (over round-trips) intensity evolution, we reveal an existence of wide range of generation regimes. Different kinds of coherent structures including dark and grey solitons and rogue-like bright coherent structures are observed as well as interaction between them are revealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fibre lasers. These include parabolic self-similar pulse mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fibre laser by inclusion of a spectral filter into the laser cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively. © 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical-external-cavity surface-emitting lasers (VECSELs) have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multi-mode or single-frequency continuouswave operation, and on the other hand two-color as well as mode-locked emission. Particularly, the combination of semiconductor gain medium and external cavity provides a unique access to high-brightness output, a high beam quality and wavelength flexibility. Moreover, the exploitation of intra-cavity frequency conversion further extends the achievable radiation wavelength, spanning a spectral range from the UV to the THz. In this work, recent advances in the field of VECSELs are summarized and the demonstration of self-mode-locking (SML) VECSELs with sub-ps pulses is highlighted. Thereby, we present studies which were not only performed for a quantum-well-based VECSEL, but also for a quantum-dot VECSEL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new approach to the generation of an alphabet for secret key exchange relying on small variations in the cavity length of an ultra-long fiber laser. This new concept is supported by experimental results showing how the radio-frequency spectrum of the laser can be exploited as a carrier to exchange information. The test bench for our proof of principle is a 50 km-long fiber laser linking two users, Alice and Bob, where each user can randomly add an extra 1 km-long segment of fiber. The choice of laser length is driven by two independent random binary values, which makes such length become itself a random variable. The security of key exchange is ensured whenever the two independent random choices lead to the same laser length and, hence, to the same free spectral range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical modeling of cascade erbium-doped and holmium-doped fluoride fiber lasers is presented. Fiber lengths were optimized for cascade lasers that had fixed or free-running wavelengths using all known spectroscopic parameters. The performance of the cascade laser was tested against dopant concentration, energy transfer process, heat generation, output coupling, and pump schemes. The results suggest that the slope efficiencies and thresholds for both transitions increase with increasing Ho3+ or Er3+ concentration with the slope efficiency stabilizing after 1 mol% rare earth doping. The heat generation in the Ho3+-based system is lower compared to the Er 3+-based system at low dopant concentration as a result of the lower rates of multiphonon relaxation. Decreasing the output coupling for the upper (∼3 μm) transition decreases the threshold of the lower transition and the upper transition benefits from decreasing the output coupling for the lower transition for both cascade systems. The highest slope efficiency was achieved under counter-propagating pump conditions. Saturation of the output power occurs at comparatively higher pump power with dilute Er3+ doping compared with heavier doping. Overall, we show that the cascade Ho3+ -doped fluoride laser is the best candidate for high power output because of its higher slope efficiency and lower temperature excursion of the core and no saturation of the output. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinearity plays a critical role in the intra-cavity dynamics of high-pulse energy fiber lasers. Management of the intra-cavity nonlinear dynamics is the key to increase the output pulse energy in such laser systems. Here, we examine the impact of the order of the intra-cavity elements on the energy of generated pulses in the all-normal dispersion mode-locked ring fiber laser cavity. In mathematical terms, the nonlinear light dynamics in resonator makes operators corresponding to the action of laser elements (active and passive fiber, out-coupler, saturable absorber) non-commuting and the order of their appearance in a cavity important. For the simple design of all-normal dispersion ring fiber laser with varying cavity length, we found the order of the cavity elements, leading to maximum output pulse energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the technique allowing for generation of low-noise wider frequency combs and pulses of shorter duration in quantum-dot mode-locked lasers. We compare experimentally noise stabilization techniques in semiconductor modelocked lasers. We discuss the benefits of electrical modulation of the laser absorber voltage (hybrid mode-locking), combination of hybrid mode-locking with optical injection seeding from the narrow linewidth continues wave master source and optical injection seeding of two coherent sidebands separated by the laser repetition rate. © 2014 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical systems with co-existence and interplay of processes featuring distinct spatio-temporal scales are found in various research areas ranging from studies of brain activity to astrophysics. The complexity of such systems makes their theoretical and experimental analysis technically and conceptually challenging. Here, we discovered that while radiation of partially mode-locked fibre lasers is stochastic and intermittent on a short time scale, it exhibits non-trivial periodicity and long-scale correlations over slow evolution from one round-trip to another. A new technique for evolution mapping of intensity autocorrelation function has enabled us to reveal a variety of localized spatio-temporal structures and to experimentally study their symbiotic co-existence with stochastic radiation. Real-time characterization of dynamical spatio-temporal regimes of laser operation is set to bring new insights into rich underlying nonlinear physics of practical active- and passive-cavity photonic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg-Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas.