69 resultados para Morgan, Thomas, d. 1743.
Resumo:
Long Period Gratings (LPG) in standard fibre have been manufactured with a sharply focused near infrared (NIR) femtosecond laser beam. Polarization splitting of the attenuation bands is strongly dependent upon the inscription power.
Resumo:
Background: Environmental conditions early in life may imprint the circadian system and influence response to environmental signals later in life. We previously determined that a large springtime increase in solar insolation at the onset location was associated with a younger age of onset of bipolar disorder, especially with a family history of mood disorders. This study investigated whether the hours of daylight at the birth location affected this association. Methods: Data collected previously at 36 collection sites from 23 countries were available for 3896 patients with bipolar I disorder, born between latitudes of 1.4N and 70.7N, and 1.2S and 41.3S. Hours of daylight variables for the birth location were added to a base model to assess the relation between the age of onset and solar insolation. Results: More hours of daylight at the birth location during early life was associated with an older age of onset, suggesting reduced vulnerability to the future circadian challenge of the springtime increase in solar insolation at the onset location. Addition of the minimum of the average monthly hours of daylight during the first 3 months of life improved the base model, with a significant positive relationship to age of onset. Coefficients for all other variables remained stable, significant and consistent with the base model. Conclusions: Light exposure during early life may have important consequences for those who are susceptible to bipolar disorder, especially at latitudes with little natural light in winter. This study indirectly supports the concept that early life exposure to light may affect the long term adaptability to respond to a circadian challenge later in life.
Resumo:
Long Period Gratings (LPG) in standard fiber have been manufactured with a sharply focused near infrared (NIR) femtosecond laser beam. Polarization splitting of the attenuation bands is strongly dependent upon the inscription power.
Resumo:
The behavior of a temperature self-compensating, fiber, long-period grating (LPG) device is studied. This device consists of a single 325-µm-period LPG recorded across two sections of a single-mode B-Ge-codoped fiber—one section bare and the other coated with a 1-µm thickness of Ag. This structure generates two attenuation bands associated with the eighth and ninth cladding modes, which are spectrally close together (~60 nm). The attenuation band associated with the Ag-coated section is unaffected by changes in the refractive index of the surrounding medium and can be used to compensate for the temperature of the bare-fiber section. The sensor has a resolution of ±1.0 × 10-3 for the refractive index and ±0.3 °C for the temperature. The effect of bending on the spectral characteristics of the two attenuation bands was found to be nonlinear, with the Ag-coated LPG having the greater sensitivity.
Resumo:
Long period gratings written into a standard optical fibre were modified by a femtosecond laser, which produced an asymmetric change to the cladding's refractive index resulting in a directional bend sensor.
Resumo:
Long period gratings have been inscribed in standard single mode fibre using a fs laser system, a fusion arc and a UV laser and a comparative study carried out of their thermal behaviour. The fs laser induced gratings can survive temperatures in excess of 800°C, however the inscription process can induce considerable birefringence within the device. Annealing studies have been carried out showing that below 600°C, all three grating types show a blue shift in their room temperature resonance wavelengths following cyclic heating, while above 600°C, the UV and arc induced LPGs exhibit a red shift, with the fs LPG showing an even stronger blue shift. High temperature annealing is also shown to considerably reduce the birefringence induced by the fs inscription process.
Resumo:
A series of LPGs with the same period was inscribed by femtosecond laser into photonic crystal fibre with various powers. All suffered post-fabrication spectral evolution at low temperatures, apparently related to inscription power.
Resumo:
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, dλ/dR from ∼7-nm m to ∼9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%. © 2007 Society of Photo-Optical Instrumentation Engineers.