76 resultados para Math Applications in Computer Science
Resumo:
We propose a taxonomy for heterogeneity and dynamics of swarms in PSO, which separates the consideration of homogeneity and heterogeneity from the presence of adaptive and non-adaptive dynamics, both at the particle and swarm level. It thus supports research into the separate and combined contributions of each of these characteristics. An analysis of the literature shows that most recent work has focussed on only parts of the taxonomy. Our results agree with prior work that both heterogeneity and dynamics are useful. However while heterogeneity does typically improve PSO, this is often dominated by the improvement due to dynamics. Adaptive strategies used to generate heterogeneity may end up sacrificing the dynamics which provide the greatest performance increase. We evaluate exemplar strategies for each area of the taxonomy and conclude with recommendations.
Resumo:
We introduce self-interested evolutionary market agents, which act on behalf of service providers in a large decentralised system, to adaptively price their resources over time. Our agents competitively co-evolve in the live market, driving it towards the Bertrand equilibrium, the non-cooperative Nash equilibrium, at which all sellers charge their reserve price and share the market equally. We demonstrate that this outcome results in even load-balancing between the service providers. Our contribution in this paper is twofold; the use of on-line competitive co-evolution of self-interested service providers to drive a decentralised market towards equilibrium, and a demonstration that load-balancing behaviour emerges under the assumptions we describe. Unlike previous studies on this topic, all our agents are entirely self-interested; no cooperation is assumed. This makes our problem a non-trivial and more realistic one.
Resumo:
Editorial
Resumo:
Complex Event processing (CEP) has emerged over the last ten years. CEP systems are outstanding in processing large amount of data and responding in a timely fashion. While CEP applications are fast growing, performance management in this area has not gain much attention. It is critical to meet the promised level of service for both system designers and users. In this paper, we present a benchmark for complex event processing systems: CEPBen. The CEPBen benchmark is designed to evaluate CEP functional behaviours, i.e., filtering, transformation and event pattern detection and provides a novel methodology of evaluating the performance of CEP systems. A performance study by running the CEPBen on Esper CEP engine is described and discussed. The results obtained from performance tests demonstrate the influences of CEP functional behaviours on the system performance. © 2014 Springer International Publishing Switzerland.
Resumo:
Drawing on the newest findings of politeness research, this paper proposes an interactionally grounded approach to computer-mediated discourse (CMD). Through the analysis of naturally occurring text-based synchronous interactions of a virtual team the paper illustrates that the interactional politeness approach can account for linguistic phenomena not yet fully explored in computer-mediated discourse analysis. Strategies used for compensating for the lack of audio-visual information in computer-mediated communication, strategies to compensate for the technological constraints of the medium, and strategies to aid interaction management are examined from an interactional politeness viewpoint and compared to the previous findings of CMD analysis. The conclusion of this preliminary research suggests that the endeavour to communicate along the lines of politeness norms in a work-based virtual environment contradicts some of the previous findings of CMD research (unconventional orthography, capitalization, economizing), and that other areas (such as emoticons, backchannel signals and turn-taking strategies) need to be revisited and re-examined from an interactional perspective to fully understand how language functions in this merely text-based environment.
Resumo:
A long period grating (LPG) fabricated in progressive three-layered (PTL) fibre is described. The grating with a period of 391µm, had dual attenuation bands associated with a particular cladding mode. The dual attenuation bands have been experimentally characterised for their spectral sensitivity to bending, which resulted in the highest sensitivity to bending seen for this particular fibre and temperature. The spectral characteristics of the fibre have been modelled giving good agreement to the experimental data as well as showing that the attenuation bands are both associated with the second order HE/EH2,n cladding mode.
Resumo:
We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.
Resumo:
The sharing of near real-time traceability knowledge in supply chains plays a central role in coordinating business operations and is a key driver for their success. However before traceability datasets received from external partners can be integrated with datasets generated internally within an organisation, they need to be validated against information recorded for the physical goods received as well as against bespoke rules defined to ensure uniformity, consistency and completeness within the supply chain. In this paper, we present a knowledge driven framework for the runtime validation of critical constraints on incoming traceability datasets encapuslated as EPCIS event-based linked pedigrees. Our constraints are defined using SPARQL queries and SPIN rules. We present a novel validation architecture based on the integration of Apache Storm framework for real time, distributed computation with popular Semantic Web/Linked data libraries and exemplify our methodology on an abstraction of the pharmaceutical supply chain.
Resumo:
In this paper we show how event processing over semantically annotated streams of events can be exploited, for implementing tracing and tracking of products in supply chains through the automated generation of linked pedigrees. In our abstraction, events are encoded as spatially and temporally oriented named graphs, while linked pedigrees as RDF datasets are their specific compositions. We propose an algorithm that operates over streams of RDF annotated EPCIS events to generate linked pedigrees. We exemplify our approach using the pharmaceuticals supply chain and show how counterfeit detection is an implicit part of our pedigree generation. Our evaluation results show that for fast moving supply chains, smaller window sizes on event streams provide significantly higher efficiency in the generation of pedigrees as well as enable early counterfeit detection.
Resumo:
This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.
Resumo:
One of the major drawbacks for mobile nodes in wireless networks is power management. Our goal is to evaluate the performance power control scheme to be used to reduce network congestion, improve quality of service and collision avoidance in vehicular network and road safety application. Some of the importance of power control (PC) are improving spatial reuse, and increasing network capacity in mobile wireless communications. In this simulation we have evaluated the performance of existing rate algorithms compared with context Aware Rate selection algorithm (ACARS) and also seen the performance of ACARS and how it can be applied to road safety, improve network control and power management. Result shows that ACARS is able to minimize the total transmit power in the presence of propagation processes and mobility of vehicles, by adapting to the fast varying channels conditions with the Path loss exponent values that was used for that environment which is shown in the network simulation parameter. Our results have shown that ACARS is a very robust algorithm which performs very well with the effect of propagation processes that is prone to every transmitted signal in mobile networks. © 2013 IEEE.
Resumo:
Due to their unique dispersion and nonlinear properties, chalcogenide suspended-core fibers, characterized by a few micrometer-sized core suspended between large air-holes by few small glaß struts, are excellent candidates for mid-infrared applications. In the present study the influence of the main croß-section characteristics of the chalcogenide suspended-core fibers on the dispersion curve and on the position of the zero-dispersion wavelength has been thoroughly analyzed with a full-vector modal solver based on the finite element. In particular, the design of suspended-core fibers made of both As2S3 and As2Se3 has been optimized to obtain dispersion properties suitable for the supercontinuum generation in the mid-infrared.
Resumo:
Most research in the area of emotion detection in written text focused on detecting explicit expressions of emotions in text. In this paper, we present a rule-based pipeline approach for detecting implicit emotions in written text without emotion-bearing words based on the OCC Model. We have evaluated our approach on three different datasets with five emotion categories. Our results show that the proposed approach outperforms the lexicon matching method consistently across all the three datasets by a large margin of 17–30% in F-measure and gives competitive performance compared to a supervised classifier. In particular, when dealing with formal text which follows grammatical rules strictly, our approach gives an average F-measure of 82.7% on “Happy”, “Angry-Disgust” and “Sad”, even outperforming the supervised baseline by nearly 17% in F-measure. Our preliminary results show the feasibility of the approach for the task of implicit emotion detection in written text.
Resumo:
In this paper we compare the robustness of several types of stylistic markers to help discriminate authorship at sentence level. We train a SVM-based classifier using each set of features separately and perform sentence-level authorship analysis over corpus of editorials published in a Portuguese quality newspaper. Results show that features based on POS information, punctuation and word / sentence length contribute to a more robust sentence-level authorship analysis. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
The ontology engineering research community has focused for many years on supporting the creation, development and evolution of ontologies. Ontology forecasting, which aims at predicting semantic changes in an ontology, represents instead a new challenge. In this paper, we want to give a contribution to this novel endeavour by focusing on the task of forecasting semantic concepts in the research domain. Indeed, ontologies representing scientific disciplines contain only research topics that are already popular enough to be selected by human experts or automatic algorithms. They are thus unfit to support tasks which require the ability of describing and exploring the forefront of research, such as trend detection and horizon scanning. We address this issue by introducing the Semantic Innovation Forecast (SIF) model, which predicts new concepts of an ontology at time t + 1, using only data available at time t. Our approach relies on lexical innovation and adoption information extracted from historical data. We evaluated the SIF model on a very large dataset consisting of over one million scientific papers belonging to the Computer Science domain: the outcomes show that the proposed approach offers a competitive boost in mean average precision-at-ten compared to the baselines when forecasting over 5 years.