64 resultados para Gas-solid fluidized bed
Resumo:
The brewing industry produces large amounts of by-products and wastes like brewers' spent grain (BSG). In Germany, each year approximately 2.1 million tonnes of BSG are generated. During the last years conventional routes of BSG utilization face a remarkable change, such as the decline in the demand as animal feed. Due to its high content of organic matter energetic utilization may create an additional economic value for breweries. Furthermore, in the recent past breweries tend to shift their energy supply towards more sustainable concepts. Although, a decent number of research projects were carried out already, still no mature strategy is available. However, one possible solution can be the mechanical pretreatment of BSG. This step allows optimized energy utilization by the fractionation of BSG. Due to the transfer of digestible components, such as protein, to the liquid phase, the solid phase will largely consist of combustible components. That represents an opportunity to produce a solid biofuel with lower fuelnitrogen content compared to only thermal dried BSG. Therefore, two main purposes for the mechanical pre-treatment were determined, (1) to reduce the moisture content to at least 60 % (w/w) and (2) to diminish the protein content of the solid phase by 30 %. Moreover, the combustion trials should demonstrate whether stable processes and flue gas emissions within the legal limits in Germany are feasible. The results of the mechanical pre-treatment trials showed that a decrease of the moisture and protein content has been achieved. With regard to the combustion trials inconsistent outcomes were found. On the one hand a stable combustion was realized. On the other hand the legal emission levels of NOx (500 mgm -3) and dust (50 mgm-3) could not be kept during all trials. The further research steps will focus on the optimization of the air/fuel ratio by reducing the primary and secondary air conditions. Copyright © 2014,AIDIC Servizi S.r.l.
Resumo:
This study presents a report on pyrolysis of Napier grass stem in a fixed bed reactor. The effects of nitrogen flow (20 to 60 mL/min), and reaction temperature (450 to 650 degrees C) were investigated. Increasing the nitrogen flow from 20 to 30 mL/min increased the bio-oil yield and decreased both bio-char and non-condensable gas. 30 mL/min nitrogen flow resulted in optimum bio-oil yield and was used in the subsequent experiments. Reaction temperatures between 450 and 600 degrees C increased the bio-oil yield, with maximum yield of 32.26 wt% at 600 degrees C and a decrease in the corresponding bio-char and non-condensable gas. At 650 degrees C, reductions in the bio-oil and bio-char yields were recorded while the non-condensable gas increased. Water content of the bio-oil decreased with increasing reaction temperature, while density and viscosity increased. The observed pH and higher heating values were between 2.43 to 2.97, and 25.25 to 28.88 MJ/kg, respectively. GC-MS analysis revealed that the oil was made up of highly oxygenated compounds and requires upgrading. The bio-char and non-condensable gas were characterized, and the effect of reaction temperature on the properties was evaluated. Napier grass represents a good source of renewable energy when all pyrolysis products are efficiently utilized.
Resumo:
Propylsulfonic acid (PrSO3H) derivatised solid acid catalysts have been prepared by post modification of mesoporous SBA-15 silica with mercaptopropyltrimethoxysilane (MPTMS), with the impact of co-derivatisation with octyltrimethoxysilane (OTMS) groups to impart hydrophobicity to the catalyst investigated. Turn over frequencies (TOF) for acetic acid esterification with methanol increase with PrSO3H surface coverage across both families suggesting a cooperative effect of adjacent acid sites at high acid site densities. Esterification activity is further promoted upon co-functionalisation with hydrophobic octyl chains, with inverse gas chromatography (iGC) measurements indicating increased activity correlates with decreased surface polarity or increased hydrophobicity.
Resumo:
Minimization of undesirable temperature gradients in all dimensions of a planar solid oxide fuel cell (SOFC) is central to the thermal management and commercialization of this electrochemical reactor. This article explores the effective operating variables on the temperature gradient in a multilayer SOFC stack and presents a trade-off optimization. Three promising approaches are numerically tested via a model-based sensitivity analysis. The numerically efficient thermo-chemical model that had already been developed by the authors for the cell scale investigations (Tang et al. Chem. Eng. J. 2016, 290, 252-262) is integrated and extended in this work to allow further thermal studies at commercial scales. Initially, the most common approach for the minimization of stack's thermal inhomogeneity, i.e., usage of the excess air, is critically assessed. Subsequently, the adjustment of inlet gas temperatures is introduced as a complementary methodology to reduce the efficiency loss due to application of excess air. As another practical approach, regulation of the oxygen fraction in the cathode coolant stream is examined from both technical and economic viewpoints. Finally, a multiobjective optimization calculation is conducted to find an operating condition in which stack's efficiency and temperature gradient are maximum and minimum, respectively.