207 resultados para Fiber posts
Resumo:
Recent work on ultra-long Raman fiber lasers has shown that it is possible to create quasi-lossless transmission conditions in fiber spans long enough to be considered for high speed optical communications. This paper reviews how quasi-lossless transmission conditions are reached and presents experimental results of 40Gb/s transmission in a quasi lossless system. The performance is compared with a conventional EDFA based system.
Resumo:
Supercontinuum generation in a multi-fiber ultra-long Raman fiber laser cavity is experimentally investigated for the first time. We demonstrate significantly enhanced spectral flatness and supercontinuum generation efficiency using only conventional single mode silica fiber. With a pump power of only 1.63W a ~15dB bandwidth >260 nm wide (from 1440 to >1700nm) supercontinuum source is reported with a flatness of <1dB over 180nm using an optimised hybrid TW/HNLF cavity. We address the dependence of the supercontinuum spectrum on the input pump power and ultra-long Raman cavity.
Resumo:
A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.
Resumo:
We demonstrate a novel glucose sensor based on an optical fiber grating with an excessively tilted index fringe structure and its surface modified by glucose oxidase (GOD). The aminopropyltriethoxysilane (APTES) was utilized as binding site for the subsequent GOD immobilization. Confocal microscopy and fluorescence microscope were used to provide the assessment of the effectiveness in modifying the fiber surface. The resonance wavelength of the sensor exhibited red-shift after the binding of the APTES and GOD to the fiber surface and also in the glucose detection process. The red-shift of the resonance wavelength showed a good linear response to the glucose concentration with a sensitivity of 0.298nm(mg/ml)-1 in the very low concentration range of 0.0∼3.0mg/ml. Compared to the previously reported glucose sensor based on the GOD-immobilized long period grating (LPG), the 81° tilted fiber grating (81°-TFG) based sensor has shown a lower thermal cross-talk effect, better linearity and higher Q-factor in sensing response. In addition, its sensitivity for glucose concentration can be further improved by increasing the grating length and/or choosing a higher-order cladding mode for detection. Potentially, the proposed techniques based on 81°-TFG can be developed as sensitive, label free and micro-structural sensors for applications in food safety, disease diagnosis, clinical analysis and environmental monitoring.
Resumo:
We present a study on the potential use of ultra-longlasercavities for unrepeateredfiber communication, based on the theory of nonlinearity management. A comparison is offered between the performance of ultra-longlasers and standard bi-directional distributed amplification schemes in nonrepeated transmission. Links based on both traditional (SMF/DCF) and modern Ultrawave transmissionfibers are considered.
Resumo:
We propose a novel approach to characterize the parabolically-shaped pulses that can be generated from more conventional pulses via nonlinear propagation in cascaded sections of commercially available normally dispersive (ND) fibers. The impact of the initial pulse chirp on the passive pulse reshaping is examined. We furthermore demonstrate that the combination of pulse pre-chirping and propagation in a single ND fiber yields a simple, passive method for generating various temporal waveforms of practical interest.
Resumo:
We demonstrate that ultralong Raman lasers can be used to generate a transmission medium with simultaneous transparency over the spatial and the spectral domains. Numerical calculations show this cross-domain transparency to be preserved when the medium is used for transmitting high-intensity signals, which makes ultralong lasers an ideal experimental test bed for the study of multifrequency nonlinear interactions in optical fiber waveguides. Full spatiospectral transparency is experimentally obtained over a 20 nm x 20 km window.
Resumo:
We demonstrate surface plasmon resonance (SPR) fiber devices based upon ultraviolet inscription of a grating-type structure into both single-layered and multilayered thin films deposited on the flat side of a lapped D-shaped fiber. The single-layered devices were fabricated from germanium, while the multilayered ones comprised layers of germanium, silica, and silver. Some of the devices operated in air with high coupling efficiency in excess of 40 dB and an estimated index sensitivity of Delta lambda/Delta n = 90 mn from 1 to 1.15 index range, while others provided an index sensitivity of Delta lambda/Delta n = 6790 mn for refractive indices from 1.33 to 1.37. (C) 2009 Optical Society of America
Resumo:
We demonstrate the use of tilted fiber gratings to assist with the generation of infrared surface plasmons on a metal film coating the flat of a D-shaped fiber. The wavelength of the strong (>25 dB) resonance is tunable over similar to 1000 nm by adjusting the polarization state of the light and is highly sensitive to the refractive index of any aqueous medium surrounding the fiber (sensitivity= 3365 nm).
Resumo:
We demonstrate the use of tilted fiber gratings to assist the generation of localized infrared surface plasmons with short propagation lengths and a sensitivity of d lambda/dn = 3365 nm in the aqueous index regime. It was also found that the resonances could be spectrally tuned over 1000 nm at the same spatial region with high coupling efficiency (in excess of 25 dB) by altering the polarization of the light illuminating the device.
Resumo:
We present a novel distributed sensor that utilizes the temperature and strain dependence of the frequency at which the Brillouin loss is maximized in the interaction between a cw laser and a pulsed laser. With a 22-km sensing length, a strain resolution of 20 µ? and a temperature resolution of 2°C have been achieved with a spatial resolution of 5 m.
Resumo:
We describe an experimental distributed temperature sensor that uses the temperature dependence of the Brillouin frequency shift. When a 22.2-km sensing length is used, we have observed a temperature resolution of 1°C and have obtained a spatial resolution of 10 m.
Resumo:
We describe a frequency-modulation technique that is applicable to two-beam interferometric systems illuminated by semiconductor diode lasers. The technique permits a determination of the optical path difference between the two arms of the interferometer and is used here to extend the range of a fiber polarimetric strain sensor by determining the order of the particular polarimetric fringe under consideration.
Resumo:
We report a novel demodulation scheme for the detection of small Bragg wavelength shifts in a fiber Bragg grating strain sensor by exploiting the optical feedback reflected from the grating structure back into a 1310 nm laser diode integrating a photodiode. The dynamic strain generated by a mechanical vibrator is applied transversely to the fiber Bragg grating and the desired longitudinal strain values inferred from the detected sawtooth-like optical feedback signals. Preliminary results demonstrate the feasibility of this demodulation technique for strain measurement which could be further extended to fiber Bragg grating-based sensors for the detection of different measurands in general.