67 resultados para FEEDBACK SEMICONDUCTOR-LASERS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Random fiber lasers blend together attractive features of traditional random lasers, such as low cost and simplicity of fabrication, with high-performance characteristics of conventional fiber lasers, such as good directionality and high efficiency. Low coherence of random lasers is important for speckle-free imaging applications. The random fiber laser with distributed feedback proposed in 2010 led to a quickly developing class of light sources that utilize inherent optical fiber disorder in the form of the Rayleigh scattering and distributed Raman gain. The random fiber laser is an interesting and practically important example of a photonic device based on exploitation of optical medium disorder. We provide an overview of recent advances in this field, including high-power and high-efficiency generation, spectral and statistical properties of random fiber lasers, nonlinear kinetic theory of such systems, and emerging applications in telecommunications and distributed sensing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present first experimental investigation of fast-intensity dynamics of random distributed feedback (DFB) fiber lasers. We found that the laser dynamics are stochastic on a short time scale and exhibit pronounced fluctuations including generation of extreme events. We also experimentally characterize statistical properties of radiation of random DFB fiber lasers. We found that statistical properties deviate from Gaussian and depend on the pump power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I will overview our recent results on ultra-long lasers and will discuss the concept of a fiber laser with an open cavity that operates using random distributed feedback provided by Rayleigh scattering amplified through the Raman effect. © 2011 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Researchers conducted investigations to demonstrate the advantages of random distributed feedback fiber laser. Random lasers had advantages, such as simple technology that did not require a precise microcavity and low production cost. The properties of their output radiation were special in comparison to those of conventional lasers and they were characterized by complex features in the spatial, spectral, and time domains. The researchers demonstrated a new type of one-dimensional laser with random distributed feedback based on Rayleigh scattering (RS) that was presented in any transparent glass medium due to natural inhomogeneities of refractive index. The cylindrical fiber waveguide geometry provided transverse confinement, while the cavity was open in the longitudinal direction and did not include any regular point-action reflectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal dynamics of Raman fibre lasers tend to have very complex nature, owing to great cavity lengths and high nonlinearity, being stochastic on short time scales and quasi-continuous on longer time scales. Generally fibre laser intensity dynamics is represented by one-dimensional time-series, which in case of quasi-continuous wave generation in Raman fibre lasers gives little insight into the processes underlying the operation of a laser. New methods of analysis and data representation could help to uncover the underlying physical processes, understand the dynamics or improve the performance of the system. Using intrinsic periodicity of laser radiation, one dimensional intensity time series of a Raman fibre laser was analysed over fast and slow variation time. This allowed to experimentally observe various spatio-temporal regimes of generation, such as laminar, turbulent, partial mode-lock, as well as transitions between them and identify the mechanisms responsible for the transitions. Great cavity length and high nonlinearity also make it difficult to achieve stable high repetition rate mode-locking in Raman fibre lasers. Using Faraday parametric instability in extremely simple linear cavity experimental configuration, a very high order harmonic mode-locking was achieved in ò.ò kmlong Raman fibre laser. The maximum achieved pulse repetition rate was 12 GHz, with 7.3 ps long Gaussian shaped pulses. There is a new type of random lasers – random distributed feedback Raman fibre laser, which temporal properties cannot be controlled by conventionalmode-locking or Q-switch techniques and mechanisms. By adjusting the pump configuration, a very stable pulsed operation of random distributed feedback Raman fibre laser was achieved. Pulse duration varied in the range from 50 to 200 μs depending on the pump power and the cavity length. Pulse repetition rate scaling on the parameters of the system was experimentally identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a fibre laser with a mirrorless cavity that operates via Rayleigh scattering amplified through the Raman effect. The properties of such random distributed feedback laser appear different from those of both traditional random lasers and conventional fibre lasers. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The difference between the turn-on times is measured as a function of the pump rate of change and reveals no clear power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers. We find that the effective time of the GS turn on follows an -1/2 power law provided that the rate of change is not too small. The effective time of the ES transition follows an -1 power law, but its first order correction in ln is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on the time needed to leave a repellent steady state.