74 resultados para CORTICAL PROJECTIONS
Resumo:
The objective of this study was to determine the degree of white matter pathology in the cerebral cortex in cases of variant Creutzfeldt-Jakob disease (vCJD) and to study the relationships between the white matter and grey matter pathologies. Hence, the pathological changes in cortical white matter were studied in individual gyri of the frontal, parietal, occipital, and temporal cortex in eleven cases of vCJD. Vacuolation (‘spongiform change’), deposition of the disease form of prion protein (PrPsc) in the form of discrete PrP deposits, and gliosis were observed in the white matter of virtually all cortical regions studied. Mean density of the vacuoles in the white matter was greater in the parietal lobe compared with the frontal, occipital, and temporal lobes but there were fewer glial cells in the occipital lobe compared with the other cortical regions. In the white matter of the frontal cortex, vacuole density was negatively correlated with the density of both glial cell nuclei and the PrP deposits. In addition, the densities of glial cells and PrP deposits were positively correlated in the frontal and parietal cortex. In the white matter of the frontal cortex and inferior temporal gyrus, there was a negative correlation between the densities of the vacuoles and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In addition, in the frontal cortex, vacuole density in the white matter was negatively correlated with the density of the diffuse PrP deposits in laminae II/III and V/VI of the adjacent grey matter. The densities of PrP deposits in the white matter of the frontal cortex were positively correlated with the density of the diffuse PrP deposits in laminae II/III and V/V1 and with the number of surviving neurons in laminae V/V1. The data suggest that in the white matter in vCJD, gliosis is associated with the development of PrP deposits while the appearance of the vacuolation is a later development. In addition, neuronal loss and PrP deposition in the lower cortical laminae of the grey matter may be a consequence of axonal degeneration within the white matter.
Resumo:
Objectives. Emotional dysregulation in bipolar disorder is thought to arise from dysfunction within prefrontal cortical regions involved in cognitive control coupled with increased or aberrant activation within regions engaged in emotional processing. The aim of this study was to determine the common and distinct patterns of functional brain abnormalities during reward and working memory processing in patients with bipolar disorder. Methods. Participants were 36 euthymic bipolar disorder patients and 37 healthy comparison subjects matched for age, sex and IQ. Functional magnetic resonance imaging (fMRI) was conducted during the Iowa Gambling Task (IGT) and the n-back working memory task. Results. During both tasks, patients with bipolar disorder demonstrated a pattern of inefficient engagement within the ventral frontopolar prefrontal cortex with evidence of segregation along the medial-lateral dimension for reward and working memory processing, respectively. Moreover, patients also showed greater activation in the anterior cingulate cortex during the Iowa Gambling Task and in the insula during the n-back task. Conclusions. Our data implicate ventral frontopolar dysfunction as a core abnormality underpinning bipolar disorder and confirm that overactivation in regions involved in emotional arousal is present even in tasks that do not typically engage emotional systems. © 2012 Informa Healthcare.
Resumo:
Background: Bipolar disorder is associated with dysfunction in prefrontal and limbic areas implicated in emotional processing. Aims: To explore whether lamotrigine monotherapy may exert its action by improving the function of the neural network involved in emotional processing. Method: We used functional magnetic resonance imaging to examine changes in brain activation during a sad facial affect recognition task in 12 stable patients with bipolar disorder when medication-free compared with healthy controls and after 12 weeks of lamotrigine monotherapy. Results: At baseline, compared with controls, patients with bipolar disorder showed overactivity in temporal regions and underactivity in the dorsal medial and right ventrolateral prefrontal cortex, and the dorsal cingulate gyrus. Following lamotrigine monotherapy, patients demonstrated reduced temporal and increased prefrontal activation. Conclusions: This preliminary evidence suggests that lamotrigine may enhance the function of the neural circuitry involved in affect recognition.
Resumo:
The present report reviews behavioural, electroencephalographic, and especially magnetoencephalographic findings on the cortical mechanisms underlying attentional processes that separate targets from distractors and that ensure durable target representations for goal-directed action. A common way of investigation is to observe the system’s overt and covert behaviour when capacity limitations are reached. Here we focus on the aspect of temporally enhanced processing load, namely on performance deficits occurring under rapid-serial-visual-presentation (RSVP) conditions. The most prominent of these deficits is the so-called “attentional blink” (AB) effect. We first report MEG findings with respect to the time course of activation that shows modulations around 300 ms after target onset which reflect demands and success of target consolidation. Then, findings regarding long-range inter-area phase synchronization are reported that are hypothesized to mediate communication within the attentional network. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioural performance. Furthermore, enhanced vigilance of the system elicits systematically increased synchronization indices. A hypothetical framework is sketched out that aims at explaining limitations in multiple target consolidation under RSVP conditions.
Resumo:
The human mirror neuron system (MNS) has recently been a major topic of research in cognitive neuroscience. As a very basic reflection of the MNS, human observers are faster at imitating a biological as compared with a non-biological movement. However, it is unclear which cortical areas and their interactions (synchronization) are responsible for this behavioural advantage. We investigated the time course of long-range synchronization within cortical networks during an imitation task in 10 healthy participants by means of whole-head magnetoencephalography (MEG). Extending previous work, we conclude that left ventrolateral premotor, bilateral temporal and parietal areas mediate the observed behavioural advantage of biological movements in close interaction with the basal ganglia and other motor areas (cerebellum, sensorimotor cortex). Besides left ventrolateral premotor cortex, we identified the right temporal pole and the posterior parietal cortex as important junctions for the integration of information from different sources in imitation tasks that are controlled for movement (biological vs. non-biological) and that involve a certain amount of spatial orienting of attention. Finally, we also found the basal ganglia to participate at an early stage in the processing of biological movement, possibly by selecting suitable motor programs that match the stimulus.
Resumo:
If humans monitor streams of rapidly presented (approximately 100-ms intervals) visual stimuli, which are typically specific single letters of the alphabet, for two targets (T1 and T2), they often miss T2 if it follows T1 within an interval of 200-500 ms. If T2 follows T1 directly (within 100 ms; described as occurring at 'Lag 1'), however, performance is often excellent: the so-called 'Lag-1 sparing' phenomenon. Lag-1 sparing might result from the integration of the two targets into the same 'event representation', which fits with the observation that sparing is often accompanied by a loss of T1-T2 order information. Alternatively, this might point to competition between the two targets (implying a trade-off between performance on T1 and T2) and Lag-1 sparing might solely emerge from conditional data analysis (i.e. T2 performance given T1 correct). We investigated the neural correlates of Lag-1 sparing by carrying out magnetoencephalography (MEG) recordings during an attentional blink (AB) task, by presenting two targets with a temporal lag of either 1 or 2 and, in the case of Lag 2, with a nontarget or a blank intervening between T1 and T2. In contrast to Lag 2, where two distinct neural responses were observed, at Lag 1 the two targets produced one common neural response in the left temporo-parieto-frontal (TPF) area but not in the right TPF or prefrontal areas. We discuss the implications of this result with respect to competition and integration hypotheses, and with respect to the different functional roles of the cortical areas considered. We suggest that more than one target can be identified in parallel in left TPF, at least in the absence of intervening nontarget information (i.e. masks), yet identified targets are processed and consolidated as two separate events by other cortical areas (right TPF and PFC, respectively).
Resumo:
The purpose of this study was to investigate the effects of elastic anisotropy on nanoindentation measurements in human tibial cortical bone. Nanoindentation was conducted in 12 different directions in three principal planes for both osteonic and interstitial lamellae. The experimental indentation modulus was found to vary with indentation direction and showed obvious anisotropy (oneway analysis of variance test, P < 0.0001). Because experimental indentation modulus in a specific direction is determined by all of the elastic constants of cortical bone, a complex theoretical model is required to analyze the experimental results. A recently developed analysis of indentation for the properties of anisotropic materials was used to quantitatively predict indentation modulus by using the stiffness matrix of human tibial cortical bone, which was obtained from previous ultrasound studies. After allowing for the effects of specimen preparation (dehydrated specimens in nanoindentation tests vs. moist specimens in ultrasound tests) and the structural properties of bone (different microcomponents with different mechanical properties), there were no statistically significant differences between the corrected experimental indentation modulus (Mexp) values and corresponding predicted indentation modulus (Mpre) values (two-tailed unpaired t-test, P < 0.5). The variation of Mpre values was found to exhibit the same trends as the corrected Mexp data. These results show that the effects of anisotropy on nanoindentation measurements can be quantitatively evaluated. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Many biological materials are known to be anisotropic. In particular, microstructural components of biological materials may grow in a preferred direction, giving rise to anisotropy in the microstructure. Nanoindentation has been shown to be an effective technique for determining the mechanical properties of microstructures as small as a few microns. However, the effects of anisotropy on the properties measured by nanoindentation have not been fully addressed. This study presents a method to account for the effects of anisotropy on elastic properties measured by nanoindentation. This method is used to correlate elastic properties determined from earlier nanoindentation experiments and from earlier ultrasonic velocity measurements in human tibial cortical bone. Also presented is a procedure to determine anisotropic elastic moduli from indentation measurements in multiple directions. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res.
Resumo:
Familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP) is most commonly caused by progranulin (GRN) gene mutation. To characterize cortical degeneration in these cases, changes in density of the pathology across the cortical laminae of the frontal and temporal lobe were studied in seven cases of FTLD-TDP with GRN mutation using quantitative analysis and polynomial curve fitting. In 50% of gyri studied, neuronal cytoplasmic inclusions (NCI) exhibited a peak of density in the upper cortical laminae. Most frequently, neuronal intranuclear inclusions (NII) and dystrophic neurites (DN) exhibited a density peak in lower and upper laminae, respectively, glial inclusions (GI) being distributed in low densities across all laminae. Abnormally enlarged neurons (EN) were distributed either in the lower laminae or were more uniformly distributed across the cortex. The distribution of all neurons present varied between cases and regions, but most commonly exhibited a bimodal distribution, density peaks occurring in upper and lower laminae. Vacuolation primarily affected the superficial laminae and density of glial cell nuclei increased with distance across the cortex from pia mater to white matter. The densities of the NCI, GI, NII, and DN were not spatially correlated. The laminar distribution of the pathology in GRN mutation cases was similar to previously reported sporadic cases of FTLD-TDP. Hence, pathological changes initiated by GRN mutation, and by other causes in sporadic cases, appear to follow a parallel course resulting in very similar patterns of cortical degeneration in FTLD-TDP.
Resumo:
The entorhinal cortex (EC) is a key brain area controlling both hippocampal input and output via neurones in layer II and layer V, respectively. It is also a pivotal area in the generation and propagation of epilepsies involving the temporal lobe. We have previously shown that within the network of the EC, neurones in layer V are subject to powerful synaptic excitation but weak inhibition, whereas the reverse is true in layer II. The deep layers are also highly susceptible to acutely provoked epileptogenesis. Considerable evidence now points to a role of spontaneous background synaptic activity in control of neuronal, and hence network, excitability. In the present article we describe results of studies where we have compared background release of the excitatory transmitter, glutamate, and the inhibitory transmitter, GABA, in the two layers, the role of this background release in the balance of excitability, and its control by presynaptic auto- and heteroreceptors on presynaptic terminals. © The Physiological Society 2004.
Resumo:
Tonic conductance mediated by extrasynaptic GABAA receptors has been implicated in the modulation of network oscillatory activity. Using an in vitro brain slice to produce oscillatory activity and a kinetic model of GABAA receptor dynamics, we show that changes in tonic inhibitory input to fast spiking interneurons underlie benzodiazepine-site mediated modulation of neuronal network synchrony in rat primary motor cortex. We found that low concentrations (10 nM) of the benzodiazepine site agonist, zolpidem, reduced the power of pharmacologically-induced beta-frequency (15–30 Hz) oscillatory activity. By contrast, higher doses augmented beta power. Application of the antagonist, flumazenil, also increased beta power suggesting endogenous modulation of the benzodiazepine binding site. Voltage-clamp experiments revealed that pharmacologically-induced rhythmic inhibitory postsynaptic currents were reduced by 10 nM zolpidem, suggesting an action on inhibitory interneurons. Further voltage -clamp studies of fast spiking cells showed that 10 nM zolpidem augmented a tonic inhibitory GABAA receptor mediated current in fast spiking cells whilst higher concentrations of zolpidem reduced the tonic current. A kinetic model of zolpidem-sensitive GABAA receptors suggested that incubation with 10 nM zolpidem resulted in a high proportion of GABAA receptors locked in a kinetically slow desensitized state whilst 30 nM zolpidem favoured rapid transition into and out of desensitized states. This was confirmed experimentally using a challenge with saturating concentrations of GABA. Selective modulation of an interneuron-specific tonic current may underlie the reversal of cognitive and motor deficits afforded by low-dose zolpidem in neuropathological states.
Resumo:
Background: Recent morpho-functional evidence pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brainstem remains to be determined. We used a Functional Source Separation algorithm of EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura (MO) patients. Methods: Twenty MO patients and 20 healthy volunteers (HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brainstem and FS16 at thalamic level) and two cortical (FS20 radial and FS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450-750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced sub-cortical brainstem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between the two groups. Conclusions: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergic system may underline the interictal cortical abnormal information processing in migraine. Further studies are needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO. Written informed consent to publication was obtained from the patient(s).
Resumo:
Recent modelling studies (Hadjipapas et al. [2009]: Neuroimage 44:1290-1303) have shown that it may be possible to distinguish between different neuronal populations on the basis of their macroscopically measured (EEG/MEG) mean field. We set out to test whether the different orientation columns contributing to a signal at a specific cortical location could be identified based on the measured MEG signal. We used 1.5deg square, static, obliquely oriented grating stimuli to generate sustained gamma oscillations in a focal region of primary visual cortex. We then used multivariate classifier methods to predict the orientation (left or right oblique) of the stimuli based purely on the time-series data from this one location. Both the single trial evoked response (0-300 ms) and induced post-transient power spectra (300-2,300 ms, 20-70 Hz band) due to the different stimuli were classifiable significantly above chance in 11/12 and 10/12 datasets respectively. Interestingly, stimulus-specific information is preserved in the sustained part of the gamma oscillation, long after perception has occurred and all neuronal transients have decayed. Importantly, the classification of this induced oscillation was still possible even when the power spectra were rank-transformed showing that the different underlying networks give rise to different characteristic temporal signatures. © 2009 Wiley-Liss, Inc.
Resumo:
Background: Recent morpho-functional evidences pointed out that abnormalities in the thalamus could play a major role in the expression of migraine neurophysiological and clinical correlates. Whether this phenomenon is primary or secondary to its functional disconnection from the brain stem remains to be determined.Aim: We used a Functional Source Separation algorithmof EEG signal to extract the activity of the different neuronal pools recruited at different latencies along the somatosensory pathway in interictal migraine without aura(MO) patients. Method: Twenty MO patients and 20 healthy volunteers(HV) underwent EEG recording. Four ad-hoc functional constraints, two sub-cortical (FS14 at brain stem andFS16 at thalamic level) and two cortical (FS20 radial andFS22 tangential parietal sources), were used to extract the activity of successive stages of somatosensory information processing in response to the separate left and right median nerve electric stimulation. A band-pass digital filter (450–750 Hz) was applied offline in order to extract high-frequency oscillatory (HFO) activity from the broadband EEG signal. Results: In both stimulated sides, significant reduced subcortical brain stem (FS14) and thalamic (FS16) HFO activations characterized MO patients when compared with HV. No difference emerged in the two cortical HFO activations between two groups. Conclusion: Present results are the first neurophysiological evidence supporting the hypothesis that a functional disconnection of the thalamus from the subcortical monoaminergicsystem may underline the interictal cortical abnormal information processing in migraine. Further studiesare needed to investigate the precise directional connectivity across the entire primary subcortical and cortical somatosensory pathway in interictal MO.