372 resultados para Birmingham
Resumo:
The thrust of this report concerns spline theory and some of the background to spline theory and follows the development in (Wahba, 1991). We also review methods for determining hyper-parameters, such as the smoothing parameter, by Generalised Cross Validation. Splines have an advantage over Gaussian Process based procedures in that we can readily impose atmospherically sensible smoothness constraints and maintain computational efficiency. Vector splines enable us to penalise gradients of vorticity and divergence in wind fields. Two similar techniques are summarised and improvements based on robust error functions and restricted numbers of basis functions given. A final, brief discussion of the application of vector splines to the problem of scatterometer data assimilation highlights the problems of ambiguous solutions.
Resumo:
In this report we discuss the problem of combining spatially-distributed predictions from neural networks. An example of this problem is the prediction of a wind vector-field from remote-sensing data by combining bottom-up predictions (wind vector predictions on a pixel-by-pixel basis) with prior knowledge about wind-field configurations. This task can be achieved using the scaled-likelihood method, which has been used by Morgan and Bourlard (1995) and Smyth (1994), in the context of Hidden Markov modelling
Resumo:
This report gives an overview of the work being carried out, as part of the NEUROSAT project, in the Neural Computing Research Group at Aston University. The aim is to give a general review of the work and methods, with reference to other documents which provide the detail. The document is ongoing and will be updated as parts of the project are completed. Thus some of the references are not yet present. In the broadest sense, the Aston part of NEUROSAT is about using neural networks (and other advanced statistical techniques) to extract wind vectors from satellite measurements of ocean surface radar backscatter. The work involves several phases, which are outlined below. A brief summary of the theory and application of satellite scatterometers forms the first section. The next section deals with the forward modelling of the scatterometer data, after which the inverse problem is addressed. Dealiasing (or disambiguation) is discussed, together with proposed solutions. Finally a holistic framework is presented in which the problem can be solved.
Resumo:
Training Mixture Density Network (MDN) configurations within the NETLAB framework takes time due to the nature of the computation of the error function and the gradient of the error function. By optimising the computation of these functions, so that gradient information is computed in parameter space, training time is decreased by at least a factor of sixty for the example given. Decreased training time increases the spectrum of problems to which MDNs can be practically applied making the MDN framework an attractive method to the applied problem solver.
Resumo:
This technical report builds on previous reports to derive the likelihood and its derivatives for a Gaussian Process with a modified Bessel function based covariance function. The full derivation is shown. The likelihood (with gradient information) can be used in maximum likelihood procedures (i.e. gradient based optimisation) and in Hybrid Monte Carlo sampling (i.e. within a Bayesian framework).
Resumo:
This report outlines the derivation and application of a non-zero mean, polynomial-exponential covariance function based Gaussian process which forms the prior wind field model used in 'autonomous' disambiguation. It is principally used since the non-zero mean permits the computation of realistic local wind vector prior probabilities which are required when applying the scaled-likelihood trick, as the marginals of the full wind field prior. As the full prior is multi-variate normal, these marginals are very simple to compute.
Resumo:
Most traditional methods for extracting the relationships between two time series are based on cross-correlation. In a non-linear non-stationary environment, these techniques are not sufficient. We show in this paper how to use hidden Markov models (HMMs) to identify the lag (or delay) between different variables for such data. We first present a method using maximum likelihood estimation and propose a simple algorithm which is capable of identifying associations between variables. We also adopt an information-theoretic approach and develop a novel procedure for training HMMs to maximise the mutual information between delayed time series. Both methods are successfully applied to real data. We model the oil drilling process with HMMs and estimate a crucial parameter, namely the lag for return.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about km800, carrying a C-band scatterometer. A scatterometer measures the amount of radar back scatter generated by small ripples on the ocean surface induced by instantaneous local winds. Operational methods that extract wind vectors from satellite scatterometer data are based on the local inversion of a forward model, mapping scatterometer observations to wind vectors, by the minimisation of a cost function in the scatterometer measurement space.par This report uses mixture density networks, a principled method for modelling conditional probability density functions, to model the joint probability distribution of the wind vectors given the satellite scatterometer measurements in a single cell (the `inverse' problem). The complexity of the mapping and the structure of the conditional probability density function are investigated by varying the number of units in the hidden layer of the multi-layer perceptron and the number of kernels in the Gaussian mixture model of the mixture density network respectively. The optimal model for networks trained per trace has twenty hidden units and four kernels. Further investigation shows that models trained with incidence angle as an input have results comparable to those models trained by trace. A hybrid mixture density network that incorporates geophysical knowledge of the problem confirms other results that the conditional probability distribution is dominantly bimodal.par The wind retrieval results improve on previous work at Aston, but do not match other neural network techniques that use spatial information in the inputs, which is to be expected given the ambiguity of the inverse problem. Current work uses the local inverse model for autonomous ambiguity removal in a principled Bayesian framework. Future directions in which these models may be improved are given.
Resumo:
Purpose: To describe the methodology, sampling strategy and preliminary results for the Aston Eye Study (AES), a cross-sectional study to determine the prevalence of refractive error and its associated ocular biometry in a large multi-racial sample of school children from the metropolitan area of Birmingham, England. Methods: A target sample of 1700 children aged 6–7 years and 1200 aged 12–13 years is being selected from Birmingham schools selected randomly with stratification by area deprivation index (a measure of socio-economic status). Schools with pupils predominantly (>70%) from a single race are excluded. Sample size calculations account for the likely participation rate and the clustering of individuals within schools. Procedures involve standardised protocols to allow for comparison with international population-based data. Visual acuity, non-contact ocular biometry (axial length, corneal radius of curvature and anterior chamber depth) and cycloplegic autorefraction are measured in both eyes. Distance and near oculomotor balance, height and weight are also assessed. Questionnaires for parents and older children will allow the influence of environmental factors on refractive error to be examined. Results: Recruitment and data collection are ongoing (currently N = 655). Preliminary cross-sectional data on 213 South Asian, 44 black African Caribbean and 70 white European children aged 6–7 years and 114 South Asian, 40 black African Caribbean and 115 white European children aged 12–13 years found myopia prevalence of 9.4% and 29.4% for the two age groups respectively. A more negative mean spherical equivalent refraction (SER) was observed in older children (-0.21 D vs +0.87 D). Ethnic differences in myopia prevalence are emerging with South Asian children having higher levels than white European children 36.8% vs 18.6% (for the older children). Axial length, corneal radius of curvature and anterior chamber depth were normally distributed, while SER was leptokurtic (p < 0.001) with a slight negative skew. Conclusions: The AES will allow ethnic differences in the ocular characteristics of children from a large metropolitan area of the UK to be examined. The findings to date indicate the emergence of higher levels of myopia by early adolescence in second and third generation British South Asians, compared to white European children. The continuation of the AES will allow the early determinants of these ethnic differences to be studied.
Resumo:
Current methods for retrieving near surface winds from scatterometer observations over the ocean surface require a foward sensor model which maps the wind vector to the measured backscatter. This paper develops a hybrid neural network forward model, which retains the physical understanding embodied in ¸mod, but incorporates greater flexibility, allowing a better fit to the observations. By introducing a separate model for the mid-beam and using a common model for the fore- and aft-beams, we show a significant improvement in local wind vector retrieval. The hybrid model also fits the scatterometer observations more closely. The model is trained in a Bayesian framework, accounting for the noise on the wind vector inputs. We show that adding more high wind speed observations in the training set improves wind vector retrieval at high wind speeds without compromising performance at medium or low wind speeds.
Resumo:
We analyse how the Generative Topographic Mapping (GTM) can be modified to cope with missing values in the training data. Our approach is based on an Expectation -Maximisation (EM) method which estimates the parameters of the mixture components and at the same time deals with the missing values. We incorporate this algorithm into a hierarchical GTM. We verify the method on a toy data set (using a single GTM) and a realistic data set (using a hierarchical GTM). The results show our algorithm can help to construct informative visualisation plots, even when some of the training points are corrupted with missing values.
Resumo:
We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.