89 resultados para rotated to zero
Resumo:
This paper studies the performance of a typical non-slope matched transoceanic submarine link using 20Gb/s channel rate and RZ-DPSK modulation with different duty cycles. Through comparison with direct error counting, we have also demonstrated the limitations of the available numerical approaches to the BER estimation for return-to-zero differential phase-shift keying (RZ-DPSK). The numerical results have been confirmed by experiments, and indicate that 20 Gb/s RZ-DPSK transmission is a feasible technique for the upgrade of existing submarine links.
Resumo:
A novel all-optical regeneration technique using loop-mirror intensity-filtering and nonlinear broadening in normal-dispersion fibre is described. The device offers 2R-regeneration function and phase margin improvement. The technique is applied to 40Gbit/s return-to-zero optical data streams.
Resumo:
A novel simple all-optical nonlinear pulse processing technique using loop mirror intensity filtering and nonlinear broadening in normal dispersion fiber is described. The pulse processor offers reamplification and cleaning up of the optical signals and phase margin improvement. The efficiency of the technique is demonstrated by application to 40-Gb/s return-to-zero optical data streams. © 2004 IEEE.
Resumo:
We numerically demonstrate the feasibility of return-to-zero differential phase-shift keying transmission at 8.0 Gbit/s channel rate using cascaded in-line semiconductor optical amplifiers.
Resumo:
Applying direct error counting, we compare the accuracy and evaluate the validity of different available numerical approaches to the estimation of the bit-error rate (BER) in 40-Gb/s return-to-zero differential phase-shift-keying transmission. As a particular example, we consider a system with in-line semiconductor optical amplifiers. We demonstrate that none of the existing models has an absolute superiority over the others. We also reveal the impact of the duty cycle on the accuracy of the BER estimates through the differently introduced Q-factors. © 2007 IEEE.
Resumo:
We propose a computationally efficient method to the per-channel dispersion optimisation applied to 50 GHz-spaced N × 20-Gbit/s wavelength division multiplexing return-to-zero differential phase shift keying transmission in non-zero dispersion-shifted fibre based submarine systems. Crown Copyright © 2010.
Resumo:
In this letter, we report the performance of a fiber optical parametric amplifier (OPA) when used as a source or intermediate node amplifier in a dense wavelength-division-multiplexed (DWDM) long-haul transmission testbed with 26 DWDM channels modulated at 43.7-Gb/s return-to-zero differential phase-shift keying. In both scenarios, we demonstrate similar performance to an erbium-doped fiber amplifier. This shows the OPAs compatibility with high-capacity (>1 Tb/s) long-haul communication systems.
Resumo:
We numerically demonstrate the feasibility of return-to-zero differential phase-shift keying transmission at 80 Gbit/s channel rate using cascaded in-line semiconductor optical amplifiers.
Resumo:
We analyze the performance through numerical simulations of a new modulation format: serial dark soliton (SDS) for wide-area 100-Gb/s applications. We compare the performance of the SDS with conventional dark soliton, amplitude-modulation phase-shift keying (also known as duobinary), nonreturn-to-zero, and return-to-zero modulation formats, when subjected to typical wide-area-network impairments. We show that the SDS has a strong chromatic dispersion and polarization-mode-dispersion tolerance, while maintaining a compact spectrum suitable for strong filtering requirement in ultradense wavelength-division-multiplexing applications. The SDS can be generated using commercially available components for 40-Gb/s applications and is cost efficient when compared with other 100-Gb/s electrical-time-division-multiplexing systems.
Resumo:
A novel transmitter for 100 Gbit-Ethernet applications is proposed, based on the serial cascade of two 50 Gbit/s inverse-return-to-zero (also known as dark soliton) transmitters based on Mach-Zehnder modulators. The proposed transmitter and demultiplexer system uses commercially available components optimised for 40 Gbit/s applications. A 2.9 dB penalty at 100 Gbit/s is obtained using a single-stage OTDM demultiplexer and a preamplified receiver.
Resumo:
We analyze theoretically the interplay between optical return-to-zero signal degradation due to timing jitter and additive amplified-spontaneous-emission noise. The impact of these two factors on the performance of a square-law direct detection receiver is also investigated. We derive an analytical expression for the bit-error probability and quantitatively determine the conditions when the contributions of the effects of timing jitter and additive noise to the bit error rate can be treated separately. The analysis of patterning effects is also presented. © 2007 IEEE.
Resumo:
Effect of the carrier shape in the ultra high dense wavelength division multiplexing (WDM) return to zero differential phase shift keying (RZ-DPSK) transmission has been examined through numerical optimization of the pulse form, duty cycle and narrow multiplex/de-multiplex (MUX/DEMUX) filtering parameters. © 2007 Springer Science+Business Media, LLC.
Resumo:
We experimentally compare the performance of standard single-mode fiber (SSMF) and UltraWave fiber (UWF) for ultra-long-haul (ULH) 40-Gb/s wavelength- division- multiplexing transmissions. We used the carrier-suppressed return-to-zero amplitude-shift-keying (CSRZ-ASK) and the carrier-suppressed return-to-zero differential-phase-shift-keying (CSRZ-DPSK) formats, which are particularly well-adapted to 40-Gb/s pulse-overlapped propagation. We demonstrate that transmission distance well beyond 2000 km can be reached on UWF with both the CSRZ-ASK and CSRZ-DPSK formats, or on SSMF with the CSRZ-DPSK format only, thus indicating that SSMF-based infrastructure of incumbent carriers can be upgraded at 40-Gb/s channel rates to ULH distances. © 2007 IEEE.
Resumo:
It is shown by numerical simulations that a significant increase in the spectral density of a 40-Gb/s wavelength-division-multiplexing (WDM) system can be obtained by controlling the phase of adjacent WDM channels. These simulations are confirmed experimentally at 40 Gb/s using a coherent,comb source. This technique allows the spectral density of a nonreturn-to-zero WDM system to be increased from 0.4 to 1 b/s/Hz in a single polarization. Optical filter optimization is required to minimize power crosstalk, and appropriate strategies are discussed in this letter. Index Terms-Filtering, optical communication terminals, phase control, wavelength-division multiplexing (WDM).
Resumo:
We examine the impact of the fiber type and dispersion management on the performance of a 16 × 40 Gb/s dense wavelength-division-multiplexing nonreturn-to-zero transmission system. The transmission line is composed of G.652 or G.655 fiber with periodic dispersion compensation and hybrid Raman erbium-doped fiber amplifier amplification.