62 resultados para stochastic nonlinear systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the third and final talk on dissipative structures in fiber applications, we discuss mathematical techniques that can be used to characterize modern laser systems that consist of several discrete elements. In particular, we use a nonlinear mapping technique to evaluate high power laser systems where significant changes in the pulse evolution per cavity round trip is observed. We demonstrate that dissipative soliton solutions might be effectively described using this Poincaré mapping approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examine the feasibility of optical pulse transmission in dispersion-managed fiber systems with in-line nonlinear optical loop mirrors. Applying numerical analysis, we find regimes of stable propagation over long distances in such lines, with a significant increase in the signal-to-noise ratio. © 2000 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary form only given. Both dispersion management and the use of a nonlinear optical loop mirror (NOLM) as a saturable absorber can improve the performance of a soliton-based communication system. Dispersion management gives the benefits of low average dispersion while allowing pulses with higher powers to propagate, which helps to suppress Gordon-Haus timing jitter without sacrificing the signal-to-noise ratio. The NOLM suppresses the buildup of amplifier spontaneous emission noise and background dispersive radiation which, if allowed to interact with the soliton, can lead to its breakup. We examine optical pulse propagation in dispersion-managed (DM) transmission system with periodically inserted in-line NOLMs. To describe basic features of the signal transmission in such lines, we develop a simple theory based on a variational approach involving Gaussian trial functions. It, has already been proved that the variational method is an extremely effective tool for description of DM solitons. In the work we manage to include in the variational description the point action of the NOLM on pulse parameters, assuming that the Gaussian pulse shape is inherently preserved by propagation through the NOLM. The obtained results are verified by direct numerical simulations

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a fiber laser system as a specific illustrative example, we introduce the concept of intermediate asymptotic states in finite nonlinear optical systems. We show that intermediate asymptotics of nonlinear equations (e.g., coherent structures with a finite lifetime or distance) can be used in applications similar to those of truly stable asymptotic solutions, such as, e.g., solitons and dissipative nonlinear waves. Applying this general idea to a particular, albeit practically important, physical system, we demonstrate a novel type of nonlinear pulse-shaping regime in a mode-locked fiber laser leading to the generation of linearly chirped pulses with a triangular distribution of the intensity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present exact analytical results for the statistics of nonlinear coupled oscillators under the influence of additive white noise. We suggest a perturbative approach for analysing the statistics of such systems under the action of a deterministic perturbation, based on the exact expressions for probability density functions for noise-driven oscillators. Using our perturbation technique we show that our results can be applied to studying the optical signal propagation in noisy fibres at (nearly) zero dispersion as well as to weakly nonlinear lattice models with additive noise. The approach proposed can account for a wide spectrum of physically meaningful perturbations and is applicable to the case of large noise strength. © 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review the nonlinear channel capacity of optical fiber communication systems using both linear and nonlinear amplifiers. We show that the capacity of a nonlinear transmission system employing linear optical amplifiers can be enhanced by over 300% by using all optical regeneration. © OSA 2013.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a new framework has been applied to the design of controllers which encompasses nonlinearity, hysteresis and arbitrary density functions of forward models and inverse controllers. Using mixture density networks, the probabilistic models of both the forward and inverse dynamics are estimated such that they are dependent on the state and the control input. The optimal control strategy is then derived which minimizes uncertainty of the closed loop system. In the absence of reliable plant models, the proposed control algorithm incorporates uncertainties in model parameters, observations, and latent processes. The local stability of the closed loop system has been established. The efficacy of the control algorithm is demonstrated on two nonlinear stochastic control examples with additive and multiplicative noise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated information transmission in an array of threshold units that have signal-dependent noise and a common input signal. We demonstrate a phenomenon similar to stochastic resonance and suprathreshold stochastic resonance with additive noise and show that information transmission can be enhanced by a nonzero level of noise. By comparing system performance to one with additive noise we also demonstrate that the information transmission of weak signals is significantly better with signal-dependent noise. Indeed, information rates are not compromised even for arbitrary small input signals. Furthermore, by an appropriate selection of parameters, we observe that the information can be made to be (almost) independent of the level of the noise, thus providing a robust method of transmitting information in the presence of noise. These result could imply that the ability of hair cells to code and transmit sensory information in biological sensory systems is not limited by the level of signal-dependent noise. © 2007 The American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the design of nonlinear regenerative communication channels that have capacity above the classical Shannon capacity of the linear additive white Gaussian noise channel. The upper bound for regeneration efficiency is found and the asymptotic behavior of the capacity in the saturation regime is derived. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A modern electronic nonlinearity equalizer (NLE) based on inverse Volterra series transfer function (IVSTF) with reduced complexity is applied on coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals for next-generation long- and ultra-long-haul applications. The OFDM inter-subcarrier crosstalk effects are explored thoroughly using the IVSTF-NLE and compared with the case of linear equalization (LE) for transmission distances of up to 7000 km. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stochastic anti-resonance, that is resonant enhancement of randomness caused by polarization mode beatings, is analyzed both numerically and analytically on an example of fibre Raman amplifier with randomly varying birefringence. As a result of such anti-resonance, the polarization mode dispersion growth causes an escape of the signal state of polarization from a metastable state corresponding to the pulling of the signal to the pump state of polarization.This phenomenon reveals itself in abrupt growth of gain fluctuations as well as in dropping of Hurst parameter and Kramers length characterizing long memory in a system and noise induced escape from the polarization pulling state. The results based on analytical multiscale averaging technique agree perfectly with the numerical data obtained by direct numerical simulations of underlying stochastic differential equations. This challenging outcome would allow replacing the cumbersome numerical simulations for real-world extra-long high-speed communication systems.