51 resultados para retinopathy
Resumo:
Purpose: Diabetes is a leading cause of visual impairment in working age population in the UK. This study looked at the causes of Severe Visual Impairment(SVI) in the patients attending diabetic eye clinic and influence on the rate of SVI, over a 12 year period, after introducing retinal screening programmes in the hospital and the community in 1993 (review in 1992, 1998 & 2004). Methods: Medical records of all the patients attending the diabetic eye clinic over a period of 5months(April to August) in 1992, 1998 and 2004 were reviewed. The data collected for each patient included age, sex, ethnic origin, diabetes (type,duration &treatment), the best corrected visual acuity (present and at time of presentation), type and duration of retinopathy and attendance record to both diabetic clinic and diabetic eye clinic. In this study, SVI is defined as a visual acuity of 6/36 or worse in at least one eye. Results: In 1992, of a total 245 patients, 58patients(23.6%) had SVI {38 (15.5% of total) due to diabetic retinopathy [31(12.6%) maculopathy, 2(0.8%) vitreous haemorrhage and 5(2%) retinal detachment] and 20(8.1%) due to non–diabetic retinopathy causes}. In 1998, of a total 297, 77patients(25.9%) had SVI {33(11.1% of total) due to diabetic retinopathy [19(6.4%) maculopathy, 9(3%) proliferative retinopathy, 8(2.7%) vitreous haemorrhage and 3(1%) retinal detachment]and 44(14.8%)due to non–diabetic retinopathy}. In 2004, of a total 471, 72patients(15.2%) had SVI{46(9.7%of total) due to diabetic retinopathy [37(7.8%) maculopathy, 1(0.2%) proliferative retinopathy, 6(1.8%) vitreous haemorrhage and 2(0.4%) retinal detachment]and 26(5.5%) due to non– diabetic retinopathy causes}. Conclusions: Introduction of formalised annual diabetic review including retinal screening and a community retinal screening programme has reduced the rate of severe visual impairment due to diabetic retinopathy, in patients attending diabetic eye clinic, from 15.5% in1992 to 9.7% in2004. Keywords: diabetic retinopathy
Resumo:
Purpose: Current panretinal laser photocoagulative parameters are based on the Diabetic Retinopathy Study, which used exposures of 0.1 - 0.5 second to achieve moderate intensity retinal burns. Unfortunately, many patients find these settings painful. We wanted to investigate whether reducing exposure time and increasing power to give the same endpoint, is more comfortable and effective. Methods: 20 patients having panretinal photocoagulation for the first time underwent random allocation to two forms of laser treatment: half of the retinal area scheduled for treatment was treated with Green Yag laser with conventional parameters {exposure time 0.1 second (treatment A), power density sufficient to produce a visible grey - white burns}. The other half treated with shorter exposure 0.02 second (treatment B). All patient were asked to evaluate severity of pain on a visual analogue scale ranging from 0 - 10 (0 = no pain, 10 = most severe pain). All patients were masked as to the type of treatment. The order of carrying out the treatment on each patient was randomised. Fundus photographs were taken of each hemifundus to confirm treatment. Results: Of the 20 patients, 17 had proliferative diabetic retinopathy, 2 had ischaemic central retinal vein occlusion and one had ocular ischaemic syndrome. The average pain response to treatment A was 5.11 on a visual analogue scale with a mean power of 0.178 Watt; the average pain response to treatment B was 1.40 with a mean power of 0.489 Watt. Short exposure laser burns were significantly less painful (P < 0.001). Conclusion: Shortening exposure time with increased power is more comfortable for patients undergoing panretinal photocoagulation than conventional parameters.
Resumo:
The quarter century since the foundation of the Royal College of Ophthalmologists has coincided with immense change in the subspecialty of medical retina, which has moved from being the province of a few dedicated enthusiasts to being an integral, core part of ophthalmology in every eye department. In age-related macular degeneration, there has been a move away from targeted, destructive laser therapy, dependent on fluorescein angiography to intravitreal injection therapy of anti-growth factor agents, largely guided by optical coherence tomography. As a result of these changes, ophthalmologists have witnessed a marked improvement in visual outcomes for their patients with wet age-related macular degeneration (AMD), while at the same time developing and enacting entirely novel ways of delivering care. In the field of diabetic retinopathy, this period also saw advances in laser technology and a move away from highly destructive laser photocoagulation treatment to gentler retinal laser treatments. The introduction of intravitreal therapies, both steroids and anti-growth factor agents, has further advanced the treatment of diabetic macular oedema. This era has also seen in the United Kingdom the introduction of a coordinated national diabetic retinopathy screening programme, which offers an increasing hope that the burden of blindness from diabetic eye disease can be lessened. Exciting future advances in retinal imaging, genetics, and pharmacology will allow us to further improve outcomes for our patients and for ophthalmologists specialising in medical retina, the future looks very exciting but increasingly busy.
Resumo:
Background/aims: Retinal screening programmes in England and Scotland have similar photographic grading schemes for background (non-proliferative) and proliferative diabetic retinopathy, but diverge over maculopathy. We looked for the most cost-effective method of identifying diabetic macular oedema from retinal photographs including the role of automated grading and optical coherence tomography, a technology that directly visualises oedema. Methods: Patients from seven UK centres were recruited. The following features in at least one eye were required for enrolment: microaneurysms/dot haemorrhages or blot haemorrhages within one disc diameter, or exudates within one or two disc diameters of the centre of the macula. Subjects had optical coherence tomography and digital photography. Manual and automated grading schemes were evaluated. Costs and QALYs were modelled using microsimulation techniques. Results: 3540 patients were recruited, 3170 were analysed. For diabetic macular oedema, England's scheme had a sensitivity of 72.6% and specificity of 66.8%; Scotland 's had a sensitivity of 59.5% and specificity of 79.0%. When applying a ceiling ratio of £30 000 per quality adjusted life years (QALY) gained, Scotland's scheme was preferred. Assuming automated grading could be implemented without increasing grading costs, automation produced a greater number of QALYS for a lower cost than England's scheme, but was not cost effective, at the study's operating point, compared with Scotland's. The addition of optical coherence tomography, to each scheme, resulted in cost savings without reducing health benefits. Conclusions: Retinal screening programmes in the UK should reconsider the screening pathway to make best use of existing and new technologies.
Resumo:
Objectives: To determine the best photographic surrogate markers for detecting sight-threatening macular oedema (MO) in people with diabetes attending UK national screening programmes. Design: A multicentre, prospective, observational cohort study of 3170 patients with photographic signs of diabetic retinopathy visible within the macular region [exudates within two disc diameters, microaneurysms/dot haemorrhages (M/DHs) and blot haemorrhages (BHs)] who were recruited from seven study centres. Setting: All patients were recruited and imaged at one of seven study centres in Aberdeen, Birmingham, Dundee, Dunfermline, Edinburgh, Liverpool and Oxford. Participants: Subjects with features of diabetic retinopathy visible within the macular region attending one of seven diabetic retinal screening programmes. Interventions: Alternative referral criteria for suspected MO based on photographic surrogate markers; an optical coherence tomographic examination in addition to the standard digital retinal photograph. Main outcome measures: (1) To determine the best method to detect sight-threatening MO in people with diabetes using photographic surrogate markers. (2) Sensitivity and specificity estimates to assess the costs and consequences of using alternative strategies. (3) Modelled long-term costs and quality-adjusted life-years (QALYs). Results: Prevalence of MO was strongly related to the presence of lesions and was roughly five times higher in subjects with exudates or BHs or more than two M/DHs within one disc diameter. Having worse visual acuity was associated with about a fivefold higher prevalence of MO. Current manual screening grading schemes that ignore visual acuity or the presence of M/DHs could be improved by taking these into account. Health service costs increase substantially with more sensitive/less specific strategies. A fully automated strategy, using the automated detection of patterns of photographic surrogate markers, is superior to all current manual grading schemes for detecting MO in people with diabetes. The addition of optical coherence tomography (OCT) to each strategy, prior to referral, results in a reduction in costs to the health service with no decrement in the number of MO cases detected. Conclusions: Compared with all current manual grading schemes, for the same sensitivity, a fully automated strategy, using the automated detection of patterns of photographic surrogate markers, achieves a higher specificity for detecting MO in people with diabetes, especially if visual acuity is included in the automated strategy. Overall, costs to the health service are likely to increase if more sensitive referral strategies are adopted over more specific screening strategies for MO, for only very small gains in QALYs. The addition of OCT to each screening strategy, prior to referral, results in a reduction in costs to the health service with no decrement in the number of MO cases detected. © Queen's Printer and Controller of HMSO 2013.
Resumo:
Diabetes mellitus (DM) is a metabolic disorder which is characterised by hyperglycaemia resulting from defects in insulin secretion, insulin action or both. The long-term specific effects of DM include the development of retinopathy, nephropathy and neuropathy. Cardiac disease, peripheral arterial and cerebrovascular disease are also known to be linked with DM. Type 1 diabetes mellitus (T1DM) accounts for approximately 10% of all individuals with DM, and insulin therapy is the only available treatment. Type 2 diabetes mellitus (T2DM) accounts for 90% of all individuals with DM. Diet, exercise, oral hypoglycaemic agents and occasionally exogenous insulin are used to manage T2DM. The diagnosis of DM is made where the glycated haemoglobin (HbA1c) percentage is greater than 6.5%. Pattern-reversal visual evoked potential (PVEP) testing is an objective means of evaluating impulse conduction along the central nervous pathways. Increased peak time of the visual P100 waveform is an expression of structural damage at the level of myelinated optic nerve fibres. This was an observational cross sectional study. The participants were grouped into two phases. Phase 1, the control group, consisted of 30 healthy non-diabetic participants. Phase 2 comprised of 104 diabetic participants of whom 52 had an HbA1c greater than 10% (poorly controlled DM) and 52 whose HbA1c was 10% and less (moderately controlled DM). The aim of this study was to firstly observe the possible association between glycated haemoglobin levels and P100 peak time of pattern-reversal visual evoked potentials (PVEPs) in DM. Secondly, to assess whether the central nervous system (CNS) and in particular visual function is affected by type and/or duration of DM. The cut-off values to define P100 peak time delay was calculated as the mean P100 peak time plus 2.5 X standard deviations as measured for the non-diabetic control group, and were 110.64 ms for the right eye. The proportion of delayed P100 peak time amounted to 38.5% for both diabetic groups, thus the poorly controlled group (HbA1c > 10%) did not pose an increased risk for delayed P100 peak time, relative to the moderately controlled group (HbA1c ≤ 10%). The P100 PVEP results for this study, do however, reflect significant delay (p < 0.001) of the DM group as compared to the non-diabetic group; thus, subclincal neuropathy of the CNS occurs in 38.5% of cases. The duration of DM and type of DM had no influence on the P100 peak time measurements.