64 resultados para quantum-dot
Resumo:
We demonstrate an ultra-compact, room-Temperature, continuous-wave, broadly-Tunable dual-wavelength InAs/GaAs quantum-dot external-cavity diode laser in the spectral region between 1150 nm and 1301 nm with maximum output power of 280 mW. This laser source generating two modes with tunable difference-frequency (300 GHz-30 THz) has a great potential to replace commonly used bulky lasers for THz generation in photomixer devices.
Resumo:
A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The difference between the turn-on times is measured as a function of the pump rate of change and reveals no clear power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers. We find that the effective time of the GS turn on follows an -1/2 power law provided that the rate of change is not too small. The effective time of the ES transition follows an -1 power law, but its first order correction in ln is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on the time needed to leave a repellent steady state.
Resumo:
We measured the optical linewidths of a passively mode-locked quantum dot laser and show that, in agreement with theoretical predictions, the modal linewidth exhibits a parabolic dependence with the mode optical frequency. The minimum linewidth follows a Schawlow-Townes behavior with a rebroadening at high power. In addition, the slope of the parabola is proportional to the RF linewidth of the laser and can therefore provide a direct measurement of the timing jitter. Such a measurement could be easily applied to mode-locked semiconductor lasers with a fast repetition rate where the RF linewidth cannot be directly measured.
Resumo:
The major contribution to decoherence of a double quantum dot or a Josephson-junction charge qubit comes from the electrostatic coupling to fluctuating background charges hybridized with the conduction electrons in the reservoir. However, estimations according to previously developed theories show that finding a sufficient number of effective fluctuators in a realistic experimental layout is quite improbable. We show that this paradox is resolved by allowing for a short-range Coulomb interaction of the fluctuators with the electrons in the reservoir. This dramatically enhances both the number of effective fluctuators and their contribution to decoherence, resulting in the most dangerous decoherence mechanism for charge qubits.
Resumo:
We study experimentally the dynamics of quantum-dot (QD) passively mode-locked semiconductor lasers under external optical injection. The lasers demonstrated multiple dynamical states, with bifurcation boundaries that depended upon the sign of detuning variation. The area of the hysteresis loops grew monotonically at small powers of optical injection and saturated at moderate powers. At high injection levels the hysteresis decreased and eventually disappeared.
Resumo:
We investigate numerically and experimentally the properties of a passively mode locked quantum dot semiconductor laser under the influence of cw optical injection. We demonstrate that the waveform instability at high pumping for these devices can be overcome when one mode of the device is locked to the injected master laser and additionally show spectral narrowing and tunability. Experimental and numerical analyses demonstrate that the stable locking boundaries are similar to these obtained for optical injection in CW lasers. © 2010 American Institute of Physics.
Resumo:
We perform characterization of the pulse shape and noise properties of quantum dot passively mode-locked lasers (PMLLs). We propose a novel method to determine the RF linewidth and timing jitter, applicable to high repetition rate PMLLs, through the dependence of modal linewidth on the mode number. Complex electric field measurements show asymmetric pulses with parabolic phase close to threshold, with the appearance of waveform instabilities at higher currents. We demonstrate that the waveform instabilities can be overcome through optical injection-locking to the continues wave (CW) master laser, leading to time-bandwidth product (TBP) improvement, spectral narrowing, and spectral tunability. We discuss the benefits of single- and dual-tone master sources and demonstrate that dual-tone optical injection can additionally improve the noise properties of the slave laser with RF linewidth reduction below instrument limits (1 kHz) and integrated timing jitter values below 300 fs. Dual-tone injection allowed slave laser repetition rate control over a 25 MHz range with reduction of all modal optical linewidths to the master source linewidth, demonstrating phase-locking of all slave modes and coherence improvement.
Resumo:
We perform characterization of the pulse shape and noise properties of quantum dot passively mode-locked lasers (PMLLs). We propose a novel method to determine the RF linewidth and timing jitter, applicable to high repetition rate PMLLs, through the dependence of modal linewidth on the mode number. Complex electric field measurements show asymmetric pulses with parabolic phase close to threshold, with the appearance of waveform instabilities at higher currents. We demonstrate that the waveform instabilities can be overcome through optical injection-locking to the continues wave (CW) master laser, leading to time-bandwidth product (TBP) improvement, spectral narrowing, and spectral tunability. We discuss the benefits of single- and dual-tone master sources and demonstrate that dual-tone optical injection can additionally improve the noise properties of the slave laser with RF linewidth reduction below instrument limits (1 kHz) and integrated timing jitter values below 300 fs. Dual-tone injection allowed slave laser repetition rate control over a 25 MHz range with reduction of all modal optical linewidths to the master source linewidth, demonstrating phase-locking of all slave modes and coherence improvement.
Resumo:
We investigate numerically and experimentally the properties of a passively mode locked quantum dot semiconductor laser under the influence of cw optical injection. We demonstrate that the waveform instability at high pumping for these devices can be overcome when one mode of the device is locked to the injected master laser and additionally show spectral narrowing and tunability. Experimental and numerical analyses demonstrate that the stable locking boundaries are similar to these obtained for optical injection in CW lasers. © 2010 American Institute of Physics.
Resumo:
We calculate the tunnelling density of states (TDoS) for a quantum dot in the Coulomb-blockade regime, using a functional integral representation with allowing correctly for the charge quantisation. We show that in addition to the well-known gap in the TDoS in the Coulomb-blockade valleys, there is a suppression of the TDoS at the peaks. We show that such a suppression is necessary in order to get the correct result for the peak of the differential conductance through an almost close quantum dot.
Resumo:
We demonstrate a CW tunable compact all-room-temperature laser system in the visible spectral region from 567.7 nm to 629.1 nm, by frequency doubling in a periodically-poled KTP waveguide crystal using a tunable quantum-dot external-cavity diode laser.
Resumo:
A compact picosecond all-room-temperature orange-to-red tunable laser source in the spectral region between 600 and 627 nm is demonstrated. The tunable radiation is obtained by second-harmonic generation in a periodically poled potassium titanyl phosphate (PPKTP) multimode waveguide using a tunable quantum-dot external-cavity mode-locked laser. The maximum second-harmonic output peak power of 3.91 mW at 613 nm is achieved for 85.94 mW of launched pump peak power at 1226 nm, resulting in conversion efficiency of 4.55%. © 2013 Optical Society of America.
Resumo:
We study experimentally the dynamics of quantum-dot (QD) passively mode-locked semiconductor lasers under external optical injection. The lasers demonstrated multiple dynamical states, with bifurcation boundaries that depended upon the sign of detuning variation. The area of the hysteresis loops grew monotonically at small powers of optical injection and saturated at moderate powers. At high injection levels the hysteresis decreased and eventually disappeared.
Resumo:
A compact high-power yellow-green continuous wave (CW) laser source based on second-harmonic generation (SHG) in a 5% MgO doped periodically poled congruent lithium niobate (PPLN) waveguide crystal pumped by a quantum-dot fiber Bragg grating (QD-FBG) laser diode is demonstrated. A frequency-doubled power of 90.11 mW at the wavelength of 560.68 nm with a conversion efficiency of 52.4% is reported. To the best of our knowledge, this represents the highest output power and conversion efficiency achieved to date in this spectral region from a diode-pumped PPLN waveguide crystal, which could prove extremely valuable for the deployment of such a source in a wide range of biomedical applications.
Resumo:
This thesis describes the synthesis of functionalised polymeric material by variety of free-radical mediated polymerisation techniques including dispersion emulsion, seeded emulsion, suspension and bulk polymerisation reactions. Organic fluorophores and nanoparticles such as quantum dots were incorporated within polymeric materials, in particular, thiol-functionalised polymer microspheres, which were fluorescently labelled either during synthesis or by covalent attachment post synthesis. The resultant fluorescent polymeric conjugates were then assessed for their utility in biological systems as an analytical tool for cells or biological structures. Quantum dot labelled, thiol-functionalised microspheres were assessed for their utility in the visualisation and tracking of red blood cells. Determination of the possible internalisation of fluorescent microspheres into red blood cells was required before successful tracking of red blood cells could take place. Initial work appeared to indicate the presence of fluorescent microspheres inside red blood cells by the process of beadfection. A range of parameters were also investigated in order to optimise beadfection. Thiol-functionalised microspheres labelled successfully with organic fluorophores were used to image the tear film of the eye. A description of problems encountered with the covalent attachment of hydrophilic, thiol-reactive fluorescent dyes to a variety of modified polymer microspheres is also included in this section. Results indicated large microspheres were particularly useful when tracking the movement of fluid along the tear meniscus. Functional bulk polymers were synthesised for assessment of their interaction with titanium dioxide nanoparticles. Thiol-functionalised polymethyl methacrylate and spincoated thiouronium-functionalised polystyrene appeared to facilitate the attachment of titanium dioxide nanoparticles. Interaction assays included the use of XPS analysis and processes such as centrifugation. Attempts to synthesise 4-vinyl catechol, a compound containing hydroxyl moieties with potential for coordination with titanium dioxide nanoparticles, were also carried out using 3,4-dihydroxybenzaldehyde as the starting material.