82 resultados para proprioceptive feedback
Resumo:
The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. © 2012 Kvantovaya Elektronika and Turpion Ltd.
Resumo:
A range of physical and engineering systems exhibit an irregular complex dynamics featuring alternation of quiet and burst time intervals called the intermittency. The intermittent dynamics most popular in laser science is the on-off intermittency [1]. The on-off intermittency can be understood as a conversion of the noise in a system close to an instability threshold into effective time-dependent fluctuations which result in the alternation of stable and unstable periods. The on-off intermittency has been recently demonstrated in semiconductor, Erbium doped and Raman lasers [2-5]. Recently demonstrated random distributed feedback (random DFB) fiber laser has an irregular dynamics near the generation threshold [6,7]. Here we show the intermittency in the cascaded random DFB fiber laser. We study intensity fluctuations in a random DFB fiber laser based on nitrogen doped fiber. The laser generates first and second Stokes components 1120 nm and 1180 nm respectively under an appropriate pumping. We study the intermittency in the radiation of the second Stokes wave. The typical time trace near the generation threshold of the second Stokes wave (Pth) is shown at Fig. 1a. From the number of long enough time-traces we calculate statistical distribution between major spikes in time dynamics, Fig. 1b. To eliminate contribution of high frequency components of spikes we use a low pass filter along with the reference value of the output power. Experimental data is fitted by power law,
Resumo:
Uniform thin-films of polymer blends can be produced through spin-coating, which is used on an industrial scale for the production of light emitting diodes, and more recently organic photovoltaic devices. Here, we present the results of the direct observation, and control, over the phase separation of polystyrene and poly(9,9′-dioctylfluorene) during spin-coating using high speed stroboscopic fluorescence microscopy. This new approach, imaging the fluorescence, from a blend of fluorescent + non-fluorescent polymers allows for intensity to be directly mapped to composition, providing a direct determination of composition fluctuations during the spin-coating process. We have studied the compositional development and corresponding structural development for a range of compositions, which produce a range of different phase separated morphologies. We initially observe domains formed by spinodal decomposition, coarsening via Ostwald Ripening until an interfacial instability causes break-up of the bicontinuous morphology. Ostwald ripening continues, and depending upon composition a bicontinuous morphology is re-established. By observing compositional and morphological development in real-time, we are able to direct and control morphological structure development through control of the spin coating parameters via in situ feedback. © 2013 The Royal Society of Chemistry.
Resumo:
Standing waves are studied as solutions of a complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms. The onset is described as an instability of the uniform oscillations with respect to spatially periodic perturbations. The solution of the standing wave pattern is given analytically and studied through simulations. © 2013 American Physical Society.
Resumo:
The 2008 National Student Survey revealed that: 44% of full-time students in England did not think that the feedback on their work had been prompt nor did they agree that the feedback on their work helped them clarify things that they did not understand (HEFCE, 2008). Computer Science and Engineering & Technology have been amongst the poorest performers in this aspect as they ranked in the lower quartile (Surridge, 2007, p.32). Five years since the first NSS survey, assessment and feedback remains the biggest concern. Dissatisfaction in any aspect of studies demotivates students and can lead to disengagement and attrition. As the student number grows, the situation can only get worse if nothing is done about it. We have conducted a survey to investigate views on assessment and feedback from Engineering, Mathematics and Computing students. The survey aims at investigating the core issues of dissatisfaction in assessment and feedback and ways in which UK Engineering students can learn better through helpful feedback. The study focuses on collecting students' experiences with feedback received in their coursework, assignments and quizzes in Computing Science modules. The survey reveals the role of feedback in their learning. The results of the survey help to identify the forms of feedback that are considered to be helpful in learning and the time frame for timely feedback. We report on the findings of the survey. We also explore ways to improve assessment and feedback in a bid to better engage engineering students in their studies.
Resumo:
Feedback is a key concern for higher education practitioners, yet there is little evidence concerning the aspects of assessment feedback information that higher education students prioritise when their lecturers’ time and resources are stretched. One recent study found that in such circumstances, students actually perceive feedback information itself as a luxury rather than a necessity. We first re-examined that finding by asking undergraduates to ‘purchase’ characteristics to create the ideal lecturer, using budgets of differing sizes to distinguish necessities from luxuries. Contrary to the earlier research, students in fact considered good feedback information the single biggest necessity for lecturers to demonstrate. In a second study we used the same method to examine the characteristics of feedback information that students value most. Here, the most important perceived necessity was guidance on improvement of skills. In both studies, students’ priorities were influenced by their individual approaches to learning. These findings permit a more pragmatic approach to building student satisfaction in spite of growing expectations and demands.
Resumo:
A complex Ginzburg-Landau equation subjected to local and global time-delay feedback terms is considered. In particular, multiple oscillatory solutions and their properties are studied. We present novel results regarding the disappearance of limit cycle solutions, derive analytical criteria for frequency degeneration, amplitude degeneration, frequency extrema. Furthermore, we discuss the influence of the phase shift parameter and show analytically that the stabilization of the steady state and the decay of all oscillations (amplitude death) cannot happen for global feedback only. Finally, we explain the onset of traveling wave patterns close to the regime of amplitude death.
Resumo:
This article discusses the case study of four student teachers, examining the ways in which a particular kind of feedback—namely, confirmatory feedback—can act as a catalyst for some of the learning and potential change student teachers in a teaching practice group may experience on an initial teacher education programme. It illustrates how one piece of confirmatory feedback given to the student teacher, Jake, during post-observation feedback sessions has been influential not just for him but also for his peers. The article shows how this kind of feedback can be particularly effective when it is specific and detailed. It also exemplifies confirmatory feedback and considers the implications of such feedback for the field of teacher education.
Resumo:
Recently, the concept of a random distributed feedback (DFB) lasing in optical fibers has been demonstrated [1], A number of different random DFB fiber lasers has been demonstrated so far including tunable, multiwalength, cascaded generation, generation in different spectral bands etc [2-7]. All systems are based on standard low-loss germanium doped silica core fibres having relatively low Rayleigh scattering coefficient. Thus, the typical length of random DFB fiber lasers is in the range from several kilometres to tens of kilometres to accumulate enough random feedback. Here we demonstrate for the first time to our knowledge the random DFB fiber laser based on a nitrogen doped silica core (N-doped) fiber. The fiber has several times higher Rayleigh scattering coefficient compared to standard telecommunication fibres. Thus, the generation is achieved in 500 meters long fiber only. © 2013 IEEE.
Resumo:
Random distributed feedback (DFB) fiber lasers have attracted a great attention since first demonstration [1]. Despite big advance in practical laser systems, random DFB fiber laser spectral properties are far away to be understood or even numerically modelled. Up to date, only generation power could be calculated and optimized numerically [1,2] or analytically [3] within the power balance model. However, spectral and statistical properties of random DFB fiber laser can not be found in this way. Here we present first numerical modelling of the random DFB fiber laser, including its spectral and statistical properties, using NLSE-based model. © 2013 IEEE.
Resumo:
We present a comprehensive study of power output characteristics of random distributed feedback Raman fiber lasers. The calculated optimal slope efficiency of the backward wave generation in the one-arm configuration is shown to be as high as ∼90% for 1 W threshold. Nevertheless, in real applications a presence of a small reflection at fiber ends can appreciably deteriorate the power performance. The developed numerical model well describes the experimental data. © 2012 Optical Society of America.
Resumo:
For feedback to be effective, it must be used by the receiver. Prior research has outlined numerous reasons why students’ use of feedback is sometimes limited, but there has been little systematic exploration of these barriers. In 11 activity-oriented focus groups, 31 undergraduate Psychology students discussed how they use assessment feedback. The data revealed many barriers that inhibit use of feedback, ranging from students’ difficulties with decoding terminology, to their unwillingness to expend effort. Thematic analysis identified four underlying psychological processes: awareness, cognisance, agency, and volition. We argue that these processes should be considered when designing interventions to encourage students’ engagement with feedback. Whereas the barriers identified could all in principle be removed, we propose that doing so would typically require – or would at least benefit from – a sharing of responsibility between teacher and student. The data highlight the importance of training students to be proactive receivers of feedback.
Resumo:
We present the optimization of power and spectral performances of the random DFB fiber laser using the balance equation set. The numerical results are in good in agreement with experiments. © 2012 OSA.
Resumo:
Narrow-band generation is achieved in random distributed feedback (RDFB) fiber laser by using narrow-band filters in the center of a distributed cavity. The resulting line-width of ∼0.1 nm is 10 times less than line-width in classical random distributed feedback fiber laser. Spectral properties can be optimized further. © 2012 OSA.